高速正面撞击时,坐在同质后向式座椅上的男性死后受试者的胸腔反应和损伤。

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2024-11-14 DOI:10.1007/s10439-024-03646-2
Yun-Seok Kang, Gretchen H Baker, Timothy DeWitt, Angelo Marcallini, Vikram Pradhan, Angela Tesny, Alex Bendig, Zachary Haverfield, Amanda M Agnew, John H Bolte
{"title":"高速正面撞击时,坐在同质后向式座椅上的男性死后受试者的胸腔反应和损伤。","authors":"Yun-Seok Kang, Gretchen H Baker, Timothy DeWitt, Angelo Marcallini, Vikram Pradhan, Angela Tesny, Alex Bendig, Zachary Haverfield, Amanda M Agnew, John H Bolte","doi":"10.1007/s10439-024-03646-2","DOIUrl":null,"url":null,"abstract":"<p><p>In recent post-mortem human subjects (PMHS) studies in a high-speed rear-facing frontal impact (HSRFFI), the PMHS sustained multiple rib fractures. The seatback structure and properties of the seats might contribute to these fractures. This study aimed to determine if a homogeneous rear-facing seat with foam-covered seatback would mitigate the risk of thoracic injury during an HSRFFI. Three male PMHS were subjected to the same previous HSRFFI pulse. The seating structure consisted of a homogeneous seatback composed of rigid plates with load cells and covered with both comfort and safety foam. The PMHS spine was instrumented with accelerometers and angular rate sensors. Two chestbands were attached at the level of the axilla and xiphoid, and strain gages and strain rosettes were attached to ribs. Whole-body kinematics were quantified using a motion capture system. PMHS1 and PMHS3 sustained 30 and 13 rib fractures, respectively, while PMHS2 did not sustain any fractures. Average maximum anterior-posterior (A-P) chest compressions ranged from 15.9 to 22.6%. Rib fractures occurred before and after the maximum A-P compression, so A-P chest compression alone did not correlate well with rib fracture outcomes. Thoracic inferior-superior (I-S) deformation relative to the T12 was 107.4 mm for PMHS1, 27.6 mm for PMHS2, and 85.1 mm for PMHS3. The direction of the maximum principal strain indicated that ribs experienced shear caused by I-S chest deformation. These results will assist with the development of countermeasures to protect occupants in a rear-facing seating configuration, along with validation of human body models.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thoracic Responses and Injuries of Male Post-Mortem Human Subjects in a Homogeneous Rear-Facing Seat During High-Speed Frontal Impact.\",\"authors\":\"Yun-Seok Kang, Gretchen H Baker, Timothy DeWitt, Angelo Marcallini, Vikram Pradhan, Angela Tesny, Alex Bendig, Zachary Haverfield, Amanda M Agnew, John H Bolte\",\"doi\":\"10.1007/s10439-024-03646-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent post-mortem human subjects (PMHS) studies in a high-speed rear-facing frontal impact (HSRFFI), the PMHS sustained multiple rib fractures. The seatback structure and properties of the seats might contribute to these fractures. This study aimed to determine if a homogeneous rear-facing seat with foam-covered seatback would mitigate the risk of thoracic injury during an HSRFFI. Three male PMHS were subjected to the same previous HSRFFI pulse. The seating structure consisted of a homogeneous seatback composed of rigid plates with load cells and covered with both comfort and safety foam. The PMHS spine was instrumented with accelerometers and angular rate sensors. Two chestbands were attached at the level of the axilla and xiphoid, and strain gages and strain rosettes were attached to ribs. Whole-body kinematics were quantified using a motion capture system. PMHS1 and PMHS3 sustained 30 and 13 rib fractures, respectively, while PMHS2 did not sustain any fractures. Average maximum anterior-posterior (A-P) chest compressions ranged from 15.9 to 22.6%. Rib fractures occurred before and after the maximum A-P compression, so A-P chest compression alone did not correlate well with rib fracture outcomes. Thoracic inferior-superior (I-S) deformation relative to the T12 was 107.4 mm for PMHS1, 27.6 mm for PMHS2, and 85.1 mm for PMHS3. The direction of the maximum principal strain indicated that ribs experienced shear caused by I-S chest deformation. These results will assist with the development of countermeasures to protect occupants in a rear-facing seating configuration, along with validation of human body models.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03646-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03646-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在最近进行的高速后向正面撞击(HSRFFI)人体受试者(PMHS)死后研究中,PMHS 多处肋骨骨折。座椅靠背的结构和特性可能是造成这些骨折的原因。本研究旨在确定带有泡沫覆盖椅背的同质后向座椅是否能降低高速正面撞击(HSRFFI)中胸部受伤的风险。三名男性 PMHS 接受了之前相同的 HSRFFI 脉冲测试。座椅结构由带有称重传感器的刚性板组成的同质椅背构成,椅背上覆盖有舒适和安全泡沫。在 PMHS 脊柱上安装了加速度计和角速率传感器。在腋窝和剑突处安装了两个胸带,在肋骨上安装了应变计和应变片。使用运动捕捉系统对全身运动学进行量化。PMHS1 和 PMHS3 分别有 30 和 13 根肋骨骨折,而 PMHS2 没有任何骨折。平均最大前后(A-P)胸廓压缩率从15.9%到22.6%不等。肋骨骨折发生在最大胸廓前后压迫之前和之后,因此仅胸廓前后压迫与肋骨骨折的结果并没有很好的相关性。相对于T12的胸廓下-上(I-S)变形,PMHS1为107.4毫米,PMHS2为27.6毫米,PMHS3为85.1毫米。最大主应变的方向表明,肋骨经历了由胸部 I-S 形变引起的剪切。这些结果将有助于开发保护后向式座椅配置中乘员的对策,以及验证人体模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thoracic Responses and Injuries of Male Post-Mortem Human Subjects in a Homogeneous Rear-Facing Seat During High-Speed Frontal Impact.

In recent post-mortem human subjects (PMHS) studies in a high-speed rear-facing frontal impact (HSRFFI), the PMHS sustained multiple rib fractures. The seatback structure and properties of the seats might contribute to these fractures. This study aimed to determine if a homogeneous rear-facing seat with foam-covered seatback would mitigate the risk of thoracic injury during an HSRFFI. Three male PMHS were subjected to the same previous HSRFFI pulse. The seating structure consisted of a homogeneous seatback composed of rigid plates with load cells and covered with both comfort and safety foam. The PMHS spine was instrumented with accelerometers and angular rate sensors. Two chestbands were attached at the level of the axilla and xiphoid, and strain gages and strain rosettes were attached to ribs. Whole-body kinematics were quantified using a motion capture system. PMHS1 and PMHS3 sustained 30 and 13 rib fractures, respectively, while PMHS2 did not sustain any fractures. Average maximum anterior-posterior (A-P) chest compressions ranged from 15.9 to 22.6%. Rib fractures occurred before and after the maximum A-P compression, so A-P chest compression alone did not correlate well with rib fracture outcomes. Thoracic inferior-superior (I-S) deformation relative to the T12 was 107.4 mm for PMHS1, 27.6 mm for PMHS2, and 85.1 mm for PMHS3. The direction of the maximum principal strain indicated that ribs experienced shear caused by I-S chest deformation. These results will assist with the development of countermeasures to protect occupants in a rear-facing seating configuration, along with validation of human body models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
In Silico Clinical Trial for Osteoporosis Treatments to Prevent Hip Fractures: Simulation of the Placebo Arm. A Comparative Analysis of Alpha and Beta Therapy in Prostate Cancer Using a 3D Image-Based Spatiotemporal Model. Statistical Shape Modeling to Determine Poromechanics of the Human Knee Joint. Clinical Validation of Non-invasive Simulation-Based Determination of Vascular Impedance, Wave Intensity, and Hydraulic Work in Patients Undergoing Transcatheter Aortic Valve Replacement. Correction: The Effect of Low-Dose CT Protocols on Shoulder Model-Based Tracking accuracy Using Biplane Videoradiography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1