{"title":"上皮细胞 Na+ 通道、免疫细胞和盐。","authors":"Annet Kirabo, Sepiso K Masenga, Thomas R Kleyman","doi":"10.1146/annurev-physiol-022724-105050","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial Na+ channels (ENaCs) are known to affect blood pressure through their role in transporting Na+ in the distal nephron of the kidney. While expressed in other epithelial tissues, there is growing evidence that ENaCs are also expressed in nonepithelial tissues where their activity influences blood pressure. This review provides an overview of ENaCs and key mechanisms that regulate channel activity. The role of ENaCs in antigen-presenting dendritic cells is discussed, where ENaC-dependent sensing of increases in the extracellular Na+ concentration leads to activation of a signaling cascade, T cell activation with the release of proinflammatory cytokines, and an increase in blood pressure. The potential contribution of this pathway to human hypertension is discussed.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epithelial Na+ Channels, Immune Cells, and Salt.\",\"authors\":\"Annet Kirabo, Sepiso K Masenga, Thomas R Kleyman\",\"doi\":\"10.1146/annurev-physiol-022724-105050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epithelial Na+ channels (ENaCs) are known to affect blood pressure through their role in transporting Na+ in the distal nephron of the kidney. While expressed in other epithelial tissues, there is growing evidence that ENaCs are also expressed in nonepithelial tissues where their activity influences blood pressure. This review provides an overview of ENaCs and key mechanisms that regulate channel activity. The role of ENaCs in antigen-presenting dendritic cells is discussed, where ENaC-dependent sensing of increases in the extracellular Na+ concentration leads to activation of a signaling cascade, T cell activation with the release of proinflammatory cytokines, and an increase in blood pressure. The potential contribution of this pathway to human hypertension is discussed.</p>\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physiol-022724-105050\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-022724-105050","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Epithelial Na+ channels (ENaCs) are known to affect blood pressure through their role in transporting Na+ in the distal nephron of the kidney. While expressed in other epithelial tissues, there is growing evidence that ENaCs are also expressed in nonepithelial tissues where their activity influences blood pressure. This review provides an overview of ENaCs and key mechanisms that regulate channel activity. The role of ENaCs in antigen-presenting dendritic cells is discussed, where ENaC-dependent sensing of increases in the extracellular Na+ concentration leads to activation of a signaling cascade, T cell activation with the release of proinflammatory cytokines, and an increase in blood pressure. The potential contribution of this pathway to human hypertension is discussed.
期刊介绍:
Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.