缺血性心脏病心功能电异质性的机制及其影响

IF 15.7 1区 医学 Q1 PHYSIOLOGY Annual review of physiology Pub Date : 2024-11-14 DOI:10.1146/annurev-physiol-042022-020541
Hector Martinez-Navarro, Xin Zhou, Blanca Rodriguez
{"title":"缺血性心脏病心功能电异质性的机制及其影响","authors":"Hector Martinez-Navarro, Xin Zhou, Blanca Rodriguez","doi":"10.1146/annurev-physiol-042022-020541","DOIUrl":null,"url":null,"abstract":"<p><p>A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patients produces a wide range of clinical symptoms, which complicates the treatment and diagnosis of cardiac diseases. Ischemic heart disease is usually caused by a partial or complete blockage of a coronary artery. The onset of the disease begins with myocardial ischemia, which can develop into myocardial infarction if it persists for an extended period. The progressive regional tissue remodeling leads to increased electrical heterogeneities, with adverse consequences on arrhythmic risk, cardiac mechanics, and mortality. This review aims to summarize the key role of electrical heterogeneities in the heart on cardiac function and diseases. Ischemic heart disease has been chosen as an example to show how adverse electrical remodeling at different stages may lead to variable manifestations in patients. For this, we have reviewed the dynamic electrophysiological and structural remodeling from the onset of acute myocardial ischemia and reperfusion to acute and chronic stages post-myocardial infarction. The arrhythmic mechanisms, patient phenotypes, risk stratification at different stages, and patient management strategies are also discussed. Finally, we provide a brief review on how computational approaches incorporate human electrophysiological heterogeneity to facilitate basic and translational research.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease.\",\"authors\":\"Hector Martinez-Navarro, Xin Zhou, Blanca Rodriguez\",\"doi\":\"10.1146/annurev-physiol-042022-020541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patients produces a wide range of clinical symptoms, which complicates the treatment and diagnosis of cardiac diseases. Ischemic heart disease is usually caused by a partial or complete blockage of a coronary artery. The onset of the disease begins with myocardial ischemia, which can develop into myocardial infarction if it persists for an extended period. The progressive regional tissue remodeling leads to increased electrical heterogeneities, with adverse consequences on arrhythmic risk, cardiac mechanics, and mortality. This review aims to summarize the key role of electrical heterogeneities in the heart on cardiac function and diseases. Ischemic heart disease has been chosen as an example to show how adverse electrical remodeling at different stages may lead to variable manifestations in patients. For this, we have reviewed the dynamic electrophysiological and structural remodeling from the onset of acute myocardial ischemia and reperfusion to acute and chronic stages post-myocardial infarction. The arrhythmic mechanisms, patient phenotypes, risk stratification at different stages, and patient management strategies are also discussed. Finally, we provide a brief review on how computational approaches incorporate human electrophysiological heterogeneity to facilitate basic and translational research.</p>\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physiol-042022-020541\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-042022-020541","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

健康的心脏具有内在的电异质性,在心脏活化和复极化过程中发挥着重要作用。然而,心脏疾病可能会扰乱健康心脏组织的基线电特性,导致心律失常风险增加和心脏功能受损。此外,患者之间的生物变异会产生多种临床症状,这使得心脏疾病的治疗和诊断变得更加复杂。缺血性心脏病通常由冠状动脉部分或完全堵塞引起。发病始于心肌缺血,如果缺血持续时间较长,可发展为心肌梗死。渐进性区域组织重塑会导致心电异质性增加,对心律失常风险、心脏力学和死亡率产生不利影响。本综述旨在总结心脏电异质性对心脏功能和疾病的关键作用。我们以缺血性心脏病为例,说明不同阶段的不良电重塑如何导致患者的不同表现。为此,我们回顾了从急性心肌缺血和再灌注开始到心肌梗塞后的急性和慢性阶段的动态电生理和结构重塑。我们还讨论了心律失常机制、患者表型、不同阶段的风险分层以及患者管理策略。最后,我们简要回顾了计算方法如何结合人类电生理异质性来促进基础研究和转化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease.

A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patients produces a wide range of clinical symptoms, which complicates the treatment and diagnosis of cardiac diseases. Ischemic heart disease is usually caused by a partial or complete blockage of a coronary artery. The onset of the disease begins with myocardial ischemia, which can develop into myocardial infarction if it persists for an extended period. The progressive regional tissue remodeling leads to increased electrical heterogeneities, with adverse consequences on arrhythmic risk, cardiac mechanics, and mortality. This review aims to summarize the key role of electrical heterogeneities in the heart on cardiac function and diseases. Ischemic heart disease has been chosen as an example to show how adverse electrical remodeling at different stages may lead to variable manifestations in patients. For this, we have reviewed the dynamic electrophysiological and structural remodeling from the onset of acute myocardial ischemia and reperfusion to acute and chronic stages post-myocardial infarction. The arrhythmic mechanisms, patient phenotypes, risk stratification at different stages, and patient management strategies are also discussed. Finally, we provide a brief review on how computational approaches incorporate human electrophysiological heterogeneity to facilitate basic and translational research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
期刊最新文献
From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals. A Mechanistic Rationale for Incretin-Based Therapeutics in the Management of Obesity. The Physiology of Enteric Glia. Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease. Epithelial Na+ Channels, Immune Cells, and Salt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1