氢化可的松通过抑制 NF-κB 通路改善复苏后心肌功能障碍。

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Cell Biology Pub Date : 2024-11-13 DOI:10.1139/bcb-2024-0162
Yaqin Fang, Fenglin Song, Chunyan Gao, Zhiming Wang
{"title":"氢化可的松通过抑制 NF-κB 通路改善复苏后心肌功能障碍。","authors":"Yaqin Fang, Fenglin Song, Chunyan Gao, Zhiming Wang","doi":"10.1139/bcb-2024-0162","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial dysfunction is a major cause of early mortality after successful cardiopulmonary resuscitation (CPR) following cardiac arrest (CA). Following the return of spontaneous circulation, myocardial ischemia-reperfusion injury can activate the NF-κB pathway, leading to the transcription of inflammatory genes that impair myocardial function. While clinical studies show hydrocortisone (HC) improves outcomes in CA patients during CPR, its specific role in modulating the NF-κB pathway is unclear. In this study, we established an in vitro model by inducing hypoxia/reoxygenation (H/R) injury in H9C2 cardiomyocytes using Na2S2O4, followed by HC treatment. The results showed that HC treatment of H/R-injured cardiomyocytes promoted proliferation, inhibited apoptosis, and suppressed the NF-κB pathway, thereby reducing IL-6, IL-8, and TNF-α levels. Moreover, inhibition of the NF-κB pathway enhanced the proliferative capacity of H/R cardiomyocytes, decreased apoptosis rates, and reduced IL-6, IL-8, and TNF-α expression levels, with these effects being further amplified by HC treatment. These findings were further supported by in vivo experiments. In conclusion, our study suggests that HC may promote H/R cardiomyocyte proliferation, inhibit apoptosis, and alleviate inflammatory responses by suppressing the NF-κB pathway, providing new evidence to support its potential clinical application in CA management.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrocortisone improves post-resuscitation myocardial dysfunction by inhibiting the NF-κB pathway.\",\"authors\":\"Yaqin Fang, Fenglin Song, Chunyan Gao, Zhiming Wang\",\"doi\":\"10.1139/bcb-2024-0162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial dysfunction is a major cause of early mortality after successful cardiopulmonary resuscitation (CPR) following cardiac arrest (CA). Following the return of spontaneous circulation, myocardial ischemia-reperfusion injury can activate the NF-κB pathway, leading to the transcription of inflammatory genes that impair myocardial function. While clinical studies show hydrocortisone (HC) improves outcomes in CA patients during CPR, its specific role in modulating the NF-κB pathway is unclear. In this study, we established an in vitro model by inducing hypoxia/reoxygenation (H/R) injury in H9C2 cardiomyocytes using Na2S2O4, followed by HC treatment. The results showed that HC treatment of H/R-injured cardiomyocytes promoted proliferation, inhibited apoptosis, and suppressed the NF-κB pathway, thereby reducing IL-6, IL-8, and TNF-α levels. Moreover, inhibition of the NF-κB pathway enhanced the proliferative capacity of H/R cardiomyocytes, decreased apoptosis rates, and reduced IL-6, IL-8, and TNF-α expression levels, with these effects being further amplified by HC treatment. These findings were further supported by in vivo experiments. In conclusion, our study suggests that HC may promote H/R cardiomyocyte proliferation, inhibit apoptosis, and alleviate inflammatory responses by suppressing the NF-κB pathway, providing new evidence to support its potential clinical application in CA management.</p>\",\"PeriodicalId\":8775,\"journal\":{\"name\":\"Biochemistry and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2024-0162\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2024-0162","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心肌功能障碍是心脏骤停(CA)后成功进行心肺复苏(CPR)后早期死亡的主要原因。恢复自主循环后,心肌缺血再灌注损伤可激活 NF-κB 通路,导致炎症基因转录,从而损害心肌功能。虽然临床研究表明氢化可的松(HC)能改善心肺复苏过程中 CA 患者的预后,但其在调节 NF-κB 通路中的具体作用尚不清楚。在本研究中,我们通过使用 Na2S2O4 诱导 H9C2 心肌细胞缺氧/再氧合(H/R)损伤,然后进行 HC 处理,建立了一个体外模型。结果表明,HC 处理 H/R 损伤的心肌细胞可促进增殖、抑制细胞凋亡并抑制 NF-κB 通路,从而降低 IL-6、IL-8 和 TNF-α 的水平。此外,抑制 NF-κB 通路可增强 H/R 心肌细胞的增殖能力,降低细胞凋亡率,并降低 IL-6、IL-8 和 TNF-α 的表达水平,而 HC 治疗可进一步增强这些效果。这些发现得到了体内实验的进一步支持。总之,我们的研究表明,HC 可通过抑制 NF-κB 通路促进 H/R 心肌细胞增殖、抑制细胞凋亡和减轻炎症反应,为其在 CA 治疗中的潜在临床应用提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrocortisone improves post-resuscitation myocardial dysfunction by inhibiting the NF-κB pathway.

Myocardial dysfunction is a major cause of early mortality after successful cardiopulmonary resuscitation (CPR) following cardiac arrest (CA). Following the return of spontaneous circulation, myocardial ischemia-reperfusion injury can activate the NF-κB pathway, leading to the transcription of inflammatory genes that impair myocardial function. While clinical studies show hydrocortisone (HC) improves outcomes in CA patients during CPR, its specific role in modulating the NF-κB pathway is unclear. In this study, we established an in vitro model by inducing hypoxia/reoxygenation (H/R) injury in H9C2 cardiomyocytes using Na2S2O4, followed by HC treatment. The results showed that HC treatment of H/R-injured cardiomyocytes promoted proliferation, inhibited apoptosis, and suppressed the NF-κB pathway, thereby reducing IL-6, IL-8, and TNF-α levels. Moreover, inhibition of the NF-κB pathway enhanced the proliferative capacity of H/R cardiomyocytes, decreased apoptosis rates, and reduced IL-6, IL-8, and TNF-α expression levels, with these effects being further amplified by HC treatment. These findings were further supported by in vivo experiments. In conclusion, our study suggests that HC may promote H/R cardiomyocyte proliferation, inhibit apoptosis, and alleviate inflammatory responses by suppressing the NF-κB pathway, providing new evidence to support its potential clinical application in CA management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Cell Biology
Biochemistry and Cell Biology 生物-生化与分子生物学
CiteScore
6.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.
期刊最新文献
1-Deoxynojirimycin affects high glucose-induced pancreatic beta-cell dysfunction through regulating CEBPA expression and AMPK pathway. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. The role of the Polybromo-associated BAF complex in development. Gallein, G protein βγ subunits inhibitor, suppresses the TGF-α-induced migration of hepatocellular carcinoma cells via inhibition of the c-Jun N-terminal kinase. Hydrocortisone improves post-resuscitation myocardial dysfunction by inhibiting the NF-κB pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1