Tongyao Li, Zijun Xiong, Yan Liu, Haiyan Zhao, Weiya Rong, Yue Chen, Gen Chen, Lu Cao, Qing Liu, Jing Song, Weiwei Wang, Yu Liu, Xian-Zong Wang, Shao-Zhen Liu
{"title":"维生素 C 减轻鲫鱼体内 17α- 甲基睾酮免疫毒性的机制","authors":"Tongyao Li, Zijun Xiong, Yan Liu, Haiyan Zhao, Weiya Rong, Yue Chen, Gen Chen, Lu Cao, Qing Liu, Jing Song, Weiwei Wang, Yu Liu, Xian-Zong Wang, Shao-Zhen Liu","doi":"10.1186/s12864-024-10967-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, the use of endocrine-disrupting chemicals (EDCs) has become increasingly common, leading to severe environmental pollution and harm to aquatic organisms. 17α-Methyltestosterone (MT) is a synthetic androgen that can cause immunotoxicity in aquaculture, affecting fish health. To address this issue, this study aimed to investigate the effect of Vitamin C (VC) on MT-induced immunotoxicity and determine the optimal VC supplementation.</p><p><strong>Results: </strong>Carassius auratus was exposed to 50 ng/L MT and treated with 25, 50, and 150 mg/kg VC for 7, 14, and 21 d. Morphological indicators, histological characteristics, hepatic antioxidant capacity, and immune-related gene expression were analyzed. Additionally, RNA-seq was performed on the liver tissues of the control, MT, and MT + 25 mg/kg VC groups after 21 d. Results showed that, MT treatment significantly increased liver malondialdehyde content and inhibited immune-related gene expression (TNF-α, IL-8, INF-γ, IL-10, Caspase-9, and IGF-I), causing oxidative stress and immunotoxicity, leading to hepatic steatosis. However, supplementation with 25-50 mg/kg VC effectively alleviated the MT-induced damage to the hepatic structure and immune system. RNA-seq revealed significant enrichment of differentially expressed genes in multiple signaling pathways, including the mTOR, MAPK, and Wnt pathways.</p><p><strong>Conclusions: </strong>In summary, 25-50 mg/kg VC alleviated inhibitory effect of MT on immune-related genes in C. auratus liver, reducing MT-induced tissue damage. VC not only alleviated inflammation, oxidative stress, and immunotoxicity induced by MT through the regulation of the mTOR, MAPK, and Wnt signaling pathways, but also indirectly enhanced cellular antioxidant defense mechanisms by regulating the NRF2 pathway. This provides a theoretical basis for VC application in aquaculture, improving fish health and increasing efficiency.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1068"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanism of vitamin C alleviating the immunotoxicity of 17α-methyltestosterone in Carassius auratus.\",\"authors\":\"Tongyao Li, Zijun Xiong, Yan Liu, Haiyan Zhao, Weiya Rong, Yue Chen, Gen Chen, Lu Cao, Qing Liu, Jing Song, Weiwei Wang, Yu Liu, Xian-Zong Wang, Shao-Zhen Liu\",\"doi\":\"10.1186/s12864-024-10967-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In recent years, the use of endocrine-disrupting chemicals (EDCs) has become increasingly common, leading to severe environmental pollution and harm to aquatic organisms. 17α-Methyltestosterone (MT) is a synthetic androgen that can cause immunotoxicity in aquaculture, affecting fish health. To address this issue, this study aimed to investigate the effect of Vitamin C (VC) on MT-induced immunotoxicity and determine the optimal VC supplementation.</p><p><strong>Results: </strong>Carassius auratus was exposed to 50 ng/L MT and treated with 25, 50, and 150 mg/kg VC for 7, 14, and 21 d. Morphological indicators, histological characteristics, hepatic antioxidant capacity, and immune-related gene expression were analyzed. Additionally, RNA-seq was performed on the liver tissues of the control, MT, and MT + 25 mg/kg VC groups after 21 d. Results showed that, MT treatment significantly increased liver malondialdehyde content and inhibited immune-related gene expression (TNF-α, IL-8, INF-γ, IL-10, Caspase-9, and IGF-I), causing oxidative stress and immunotoxicity, leading to hepatic steatosis. However, supplementation with 25-50 mg/kg VC effectively alleviated the MT-induced damage to the hepatic structure and immune system. RNA-seq revealed significant enrichment of differentially expressed genes in multiple signaling pathways, including the mTOR, MAPK, and Wnt pathways.</p><p><strong>Conclusions: </strong>In summary, 25-50 mg/kg VC alleviated inhibitory effect of MT on immune-related genes in C. auratus liver, reducing MT-induced tissue damage. VC not only alleviated inflammation, oxidative stress, and immunotoxicity induced by MT through the regulation of the mTOR, MAPK, and Wnt signaling pathways, but also indirectly enhanced cellular antioxidant defense mechanisms by regulating the NRF2 pathway. This provides a theoretical basis for VC application in aquaculture, improving fish health and increasing efficiency.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"25 1\",\"pages\":\"1068\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-024-10967-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10967-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Mechanism of vitamin C alleviating the immunotoxicity of 17α-methyltestosterone in Carassius auratus.
Background: In recent years, the use of endocrine-disrupting chemicals (EDCs) has become increasingly common, leading to severe environmental pollution and harm to aquatic organisms. 17α-Methyltestosterone (MT) is a synthetic androgen that can cause immunotoxicity in aquaculture, affecting fish health. To address this issue, this study aimed to investigate the effect of Vitamin C (VC) on MT-induced immunotoxicity and determine the optimal VC supplementation.
Results: Carassius auratus was exposed to 50 ng/L MT and treated with 25, 50, and 150 mg/kg VC for 7, 14, and 21 d. Morphological indicators, histological characteristics, hepatic antioxidant capacity, and immune-related gene expression were analyzed. Additionally, RNA-seq was performed on the liver tissues of the control, MT, and MT + 25 mg/kg VC groups after 21 d. Results showed that, MT treatment significantly increased liver malondialdehyde content and inhibited immune-related gene expression (TNF-α, IL-8, INF-γ, IL-10, Caspase-9, and IGF-I), causing oxidative stress and immunotoxicity, leading to hepatic steatosis. However, supplementation with 25-50 mg/kg VC effectively alleviated the MT-induced damage to the hepatic structure and immune system. RNA-seq revealed significant enrichment of differentially expressed genes in multiple signaling pathways, including the mTOR, MAPK, and Wnt pathways.
Conclusions: In summary, 25-50 mg/kg VC alleviated inhibitory effect of MT on immune-related genes in C. auratus liver, reducing MT-induced tissue damage. VC not only alleviated inflammation, oxidative stress, and immunotoxicity induced by MT through the regulation of the mTOR, MAPK, and Wnt signaling pathways, but also indirectly enhanced cellular antioxidant defense mechanisms by regulating the NRF2 pathway. This provides a theoretical basis for VC application in aquaculture, improving fish health and increasing efficiency.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.