确定外周神经元的神经发生和凋亡相互依存的出生后时期。

IF 1.8 4区 生物学 Q3 BIOLOGY Biology Open Pub Date : 2024-11-15 Epub Date: 2024-11-11 DOI:10.1242/bio.060541
Catherine L Kaminski, Debarghya Dutta Banik, Ligia B Schmitd, Brian A Pierchala
{"title":"确定外周神经元的神经发生和凋亡相互依存的出生后时期。","authors":"Catherine L Kaminski, Debarghya Dutta Banik, Ligia B Schmitd, Brian A Pierchala","doi":"10.1242/bio.060541","DOIUrl":null,"url":null,"abstract":"<p><p>During neurogenesis, excessive numbers of neurons are produced in most regions of the central and peripheral nervous systems. Nonessential neurons are eliminated by apoptosis, or programmed cell death. This has been most thoroughly characterized in the peripheral nervous system (PNS) where targets of innervation play a key role in this process. As maturing neurons project axons towards their targets of innervation, they become dependent upon these targets for survival. Survival factors, also called neurotrophic factors, are produced by targets, inhibit apoptosis cascades, and promote further growth and differentiation. Because neurotrophic factors are limited, as is target size, neurons that do not correctly and efficiently innervate targets undergo apoptosis ( Levi-Montalcini, 1987; Davies, 1996). Thus, excessive neurogenesis acts to ensure that sufficient numbers of neurons are produced during development. In the superior cervical ganglion (SCG), this process of neurogenesis and subsequent apoptosis is reported to be complete by postnatal day 3-4 (P3-P4) in mice. Surprisingly, we observed significant numbers of apoptotic neurons out to P14, and neurogenesis was still present at P14 as well. In both the SCG and geniculate ganglion (GG), postnatal neurogenesis was dependent on apoptosis because little or no postnatal neurogenesis was observed in Bax-/- mice, in which apoptosis is eliminated. These results indicate that both neurogenesis and apoptosis continue to occur well after birth in peripheral ganglia, and that neurogenesis depends on apoptosis, suggesting that neurogenesis continues postnatally to replace neurons that are eliminated during synaptic refinement.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a postnatal period of interdependent neurogenesis and apoptosis in peripheral neurons.\",\"authors\":\"Catherine L Kaminski, Debarghya Dutta Banik, Ligia B Schmitd, Brian A Pierchala\",\"doi\":\"10.1242/bio.060541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During neurogenesis, excessive numbers of neurons are produced in most regions of the central and peripheral nervous systems. Nonessential neurons are eliminated by apoptosis, or programmed cell death. This has been most thoroughly characterized in the peripheral nervous system (PNS) where targets of innervation play a key role in this process. As maturing neurons project axons towards their targets of innervation, they become dependent upon these targets for survival. Survival factors, also called neurotrophic factors, are produced by targets, inhibit apoptosis cascades, and promote further growth and differentiation. Because neurotrophic factors are limited, as is target size, neurons that do not correctly and efficiently innervate targets undergo apoptosis ( Levi-Montalcini, 1987; Davies, 1996). Thus, excessive neurogenesis acts to ensure that sufficient numbers of neurons are produced during development. In the superior cervical ganglion (SCG), this process of neurogenesis and subsequent apoptosis is reported to be complete by postnatal day 3-4 (P3-P4) in mice. Surprisingly, we observed significant numbers of apoptotic neurons out to P14, and neurogenesis was still present at P14 as well. In both the SCG and geniculate ganglion (GG), postnatal neurogenesis was dependent on apoptosis because little or no postnatal neurogenesis was observed in Bax-/- mice, in which apoptosis is eliminated. These results indicate that both neurogenesis and apoptosis continue to occur well after birth in peripheral ganglia, and that neurogenesis depends on apoptosis, suggesting that neurogenesis continues postnatally to replace neurons that are eliminated during synaptic refinement.</p>\",\"PeriodicalId\":9216,\"journal\":{\"name\":\"Biology Open\",\"volume\":\"13 11\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Open\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.060541\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060541","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在神经发生过程中,中枢和周围神经系统的大部分区域都会产生过量的神经元。非必要的神经元通过细胞凋亡或程序性细胞死亡被清除。这种现象在周围神经系统(PNS)中表现得最为明显,神经支配靶点在这一过程中发挥着关键作用。当成熟的神经元将轴突投射到它们的神经支配靶点时,它们就会依赖这些靶点生存。生存因子也称为神经营养因子,由靶点产生,抑制细胞凋亡级联,并促进进一步生长和分化。由于神经营养因子是有限的,靶点的大小也是有限的,因此不能正确有效地支配靶点的神经元会发生凋亡(Levi-Montalcini,1987;Davies,1996)。因此,过度的神经发生可确保在发育过程中产生足够数量的神经元。据报道,在小鼠的上颈神经节(SCG)中,神经发生和随后的凋亡过程在出生后第 3-4 天(P3-P4)就已完成。令人惊讶的是,我们在小鼠出生后第 14 天仍观察到大量凋亡的神经元,而且神经发生在小鼠出生后第 14 天仍然存在。在SCG和膝状神经节(GG)中,出生后的神经发生都依赖于凋亡,因为在Bax-/-小鼠中几乎观察不到出生后的神经发生,而在Bax-/-小鼠中,凋亡被消除。这些结果表明,神经发生和细胞凋亡在外周神经节出生后继续发生,而且神经发生依赖于细胞凋亡,这表明神经发生在出生后继续发生,以替代在突触完善过程中被淘汰的神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of a postnatal period of interdependent neurogenesis and apoptosis in peripheral neurons.

During neurogenesis, excessive numbers of neurons are produced in most regions of the central and peripheral nervous systems. Nonessential neurons are eliminated by apoptosis, or programmed cell death. This has been most thoroughly characterized in the peripheral nervous system (PNS) where targets of innervation play a key role in this process. As maturing neurons project axons towards their targets of innervation, they become dependent upon these targets for survival. Survival factors, also called neurotrophic factors, are produced by targets, inhibit apoptosis cascades, and promote further growth and differentiation. Because neurotrophic factors are limited, as is target size, neurons that do not correctly and efficiently innervate targets undergo apoptosis ( Levi-Montalcini, 1987; Davies, 1996). Thus, excessive neurogenesis acts to ensure that sufficient numbers of neurons are produced during development. In the superior cervical ganglion (SCG), this process of neurogenesis and subsequent apoptosis is reported to be complete by postnatal day 3-4 (P3-P4) in mice. Surprisingly, we observed significant numbers of apoptotic neurons out to P14, and neurogenesis was still present at P14 as well. In both the SCG and geniculate ganglion (GG), postnatal neurogenesis was dependent on apoptosis because little or no postnatal neurogenesis was observed in Bax-/- mice, in which apoptosis is eliminated. These results indicate that both neurogenesis and apoptosis continue to occur well after birth in peripheral ganglia, and that neurogenesis depends on apoptosis, suggesting that neurogenesis continues postnatally to replace neurons that are eliminated during synaptic refinement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
期刊最新文献
Winging it: hummingbirds alter flying kinematics during molt. Breeding zebra finches prioritize reproductive bout over self-maintenance under food restriction. Glutaraldehyde-enhanced autofluorescence as a general tool for 3D morphological imaging. Sexual dimorphism and the impact of aging on ball rolling-associated locomotor behavior in Drosophila. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1