Magnus Chan, Marc Pourrier, Jodene Eldstrom, Harutyun Sahakyan, Vitya Vardanyan, David Fedida
{"title":"甲灭酸对 IKs 分子复合物的双重作用","authors":"Magnus Chan, Marc Pourrier, Jodene Eldstrom, Harutyun Sahakyan, Vitya Vardanyan, David Fedida","doi":"10.1111/bph.17389","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Mutations in both KCNQ1 and KCNE1, which together form the cardiac I<sub>Ks</sub> current, are associated with inherited conditions such as long and short QT syndromes. Mefenamic acid, a non-steroidal anti-inflammatory drug, is an I<sub>Ks</sub> potentiator and may be utilised as an archetype to design therapeutically useful I<sub>Ks</sub> agonists. However, here we show that mefenamic acid can also act as an I<sub>Ks</sub> inhibitor, and our data reveal its dual effects on KCNQ1/KCNE1 channels.</p><p><strong>Experimental approach: </strong>Effects of mefenamic acid on wild type (WT) and mutant KCNQ1/KCNE1 channels expressed in tsA201 cells were studied using whole cell patch clamp. Molecular dynamics simulations were used to determine trajectory clustering.</p><p><strong>Key results: </strong>Mefenamic acid inhibits WT I<sub>Ks</sub> at high concentrations while preserving some attributes of current potentiation. Inhibitory actions of mefenamic acid are unmasked at lower drug concentrations by KCNE1 and KCNQ1 mutations in the mefenamic acid binding pocket, at the extracellular end of KCNE1 and in the KCNQ1 S6 helix. Mefenamic acid does not inhibit KCNQ1 in the absence of KCNE1 but inhibits I<sub>Ks</sub> current in a concentration-dependent manner in the mutant channels. Inhibition involves modulation of pore kinetics and/or voltage sensor domain-pore coupling in WT and in the KCNE1 E43C mutant.</p><p><strong>Conclusion and implications: </strong>This work highlights the importance of structural motifs at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channels, and their interactions, in determining the nature of drug effects on the I<sub>Ks</sub> channel complex and has important implications for treating patients with specific long QT mutations.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual effects of mefenamic acid on the I<sub>Ks</sub> molecular complex.\",\"authors\":\"Magnus Chan, Marc Pourrier, Jodene Eldstrom, Harutyun Sahakyan, Vitya Vardanyan, David Fedida\",\"doi\":\"10.1111/bph.17389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Mutations in both KCNQ1 and KCNE1, which together form the cardiac I<sub>Ks</sub> current, are associated with inherited conditions such as long and short QT syndromes. Mefenamic acid, a non-steroidal anti-inflammatory drug, is an I<sub>Ks</sub> potentiator and may be utilised as an archetype to design therapeutically useful I<sub>Ks</sub> agonists. However, here we show that mefenamic acid can also act as an I<sub>Ks</sub> inhibitor, and our data reveal its dual effects on KCNQ1/KCNE1 channels.</p><p><strong>Experimental approach: </strong>Effects of mefenamic acid on wild type (WT) and mutant KCNQ1/KCNE1 channels expressed in tsA201 cells were studied using whole cell patch clamp. Molecular dynamics simulations were used to determine trajectory clustering.</p><p><strong>Key results: </strong>Mefenamic acid inhibits WT I<sub>Ks</sub> at high concentrations while preserving some attributes of current potentiation. Inhibitory actions of mefenamic acid are unmasked at lower drug concentrations by KCNE1 and KCNQ1 mutations in the mefenamic acid binding pocket, at the extracellular end of KCNE1 and in the KCNQ1 S6 helix. Mefenamic acid does not inhibit KCNQ1 in the absence of KCNE1 but inhibits I<sub>Ks</sub> current in a concentration-dependent manner in the mutant channels. Inhibition involves modulation of pore kinetics and/or voltage sensor domain-pore coupling in WT and in the KCNE1 E43C mutant.</p><p><strong>Conclusion and implications: </strong>This work highlights the importance of structural motifs at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channels, and their interactions, in determining the nature of drug effects on the I<sub>Ks</sub> channel complex and has important implications for treating patients with specific long QT mutations.</p>\",\"PeriodicalId\":9262,\"journal\":{\"name\":\"British Journal of Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bph.17389\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.17389","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Dual effects of mefenamic acid on the IKs molecular complex.
Background and purpose: Mutations in both KCNQ1 and KCNE1, which together form the cardiac IKs current, are associated with inherited conditions such as long and short QT syndromes. Mefenamic acid, a non-steroidal anti-inflammatory drug, is an IKs potentiator and may be utilised as an archetype to design therapeutically useful IKs agonists. However, here we show that mefenamic acid can also act as an IKs inhibitor, and our data reveal its dual effects on KCNQ1/KCNE1 channels.
Experimental approach: Effects of mefenamic acid on wild type (WT) and mutant KCNQ1/KCNE1 channels expressed in tsA201 cells were studied using whole cell patch clamp. Molecular dynamics simulations were used to determine trajectory clustering.
Key results: Mefenamic acid inhibits WT IKs at high concentrations while preserving some attributes of current potentiation. Inhibitory actions of mefenamic acid are unmasked at lower drug concentrations by KCNE1 and KCNQ1 mutations in the mefenamic acid binding pocket, at the extracellular end of KCNE1 and in the KCNQ1 S6 helix. Mefenamic acid does not inhibit KCNQ1 in the absence of KCNE1 but inhibits IKs current in a concentration-dependent manner in the mutant channels. Inhibition involves modulation of pore kinetics and/or voltage sensor domain-pore coupling in WT and in the KCNE1 E43C mutant.
Conclusion and implications: This work highlights the importance of structural motifs at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channels, and their interactions, in determining the nature of drug effects on the IKs channel complex and has important implications for treating patients with specific long QT mutations.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.