MCRANet:基于 MTSL 的连接区域注意力网络,用于 H&E 染色图像中的 PD-L1 状态分割。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-11-12 DOI:10.1016/j.compbiomed.2024.109357
Xixiang Deng , Jiayang Luo , Pan Huang , Peng He , Jiahao Li , Yanan Liu , Hualiang Xiao , Peng Feng
{"title":"MCRANet:基于 MTSL 的连接区域注意力网络,用于 H&E 染色图像中的 PD-L1 状态分割。","authors":"Xixiang Deng ,&nbsp;Jiayang Luo ,&nbsp;Pan Huang ,&nbsp;Peng He ,&nbsp;Jiahao Li ,&nbsp;Yanan Liu ,&nbsp;Hualiang Xiao ,&nbsp;Peng Feng","doi":"10.1016/j.compbiomed.2024.109357","DOIUrl":null,"url":null,"abstract":"<div><div>The quantitative analysis of Programmed death-ligand 1 (PD-L1) via Immunohistochemical (IHC) plays a crucial role in guiding immunotherapy. However, IHC faces challenges, including high costs, time consumption and result variability. Conversely, Hematoxylin-Eosin (H&amp;E) staining offers cost-effectiveness, speed, and stable results. Nonetheless, H&amp;E staining, which solely visualizes cellular morphological features, lacks clinical applicability in detecting biomarker expressions like PD-L1. Substituting H&amp;E staining for IHC in determining PD-L1 status is a clinically significant and challenging task. Motivated by above observations, we propose a Multi-Task supervised learning (MTSL)-based connectivity region attention network (MCRANet) for PD-L1 status segmentation in H&amp;E stained images. To reduce interference from non-tumor areas, the MTSL-based region attention is proposed to enhances the network's capability to distinguish between tumor and non-tumor regions. Consequently, this augmentation further improves the network's segmentation efficacy for PD-L1 positive and negative regions. Furthermore, the PD-L1 expression regions demonstrate interconnection throughout the tissue section. Leveraging this topological prior knowledge, we integrate a connectivity modeling module (CM module) within the MTSL-based region attention module (MRA module) to enhance the precision of MTSL-based region attention localization. This integration further improves the structural similarity between the segmentation results and the ground truth. Extensive visual and quantitative results demonstrate that our supervised-learning-guided MRA module produces more interpretable attention and the introduced CM module provides accurate positional attention to the MRA module. Compared to other state-of-the-art networks, MCRANet exhibits superior segmentation performance with a dice similarity coefficient (DSC) of 79.6 % on the lung squamous cell carcinoma (LUSC) PD-L1 status dataset.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109357"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCRANet: MTSL-based connectivity region attention network for PD-L1 status segmentation in H&E stained images\",\"authors\":\"Xixiang Deng ,&nbsp;Jiayang Luo ,&nbsp;Pan Huang ,&nbsp;Peng He ,&nbsp;Jiahao Li ,&nbsp;Yanan Liu ,&nbsp;Hualiang Xiao ,&nbsp;Peng Feng\",\"doi\":\"10.1016/j.compbiomed.2024.109357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quantitative analysis of Programmed death-ligand 1 (PD-L1) via Immunohistochemical (IHC) plays a crucial role in guiding immunotherapy. However, IHC faces challenges, including high costs, time consumption and result variability. Conversely, Hematoxylin-Eosin (H&amp;E) staining offers cost-effectiveness, speed, and stable results. Nonetheless, H&amp;E staining, which solely visualizes cellular morphological features, lacks clinical applicability in detecting biomarker expressions like PD-L1. Substituting H&amp;E staining for IHC in determining PD-L1 status is a clinically significant and challenging task. Motivated by above observations, we propose a Multi-Task supervised learning (MTSL)-based connectivity region attention network (MCRANet) for PD-L1 status segmentation in H&amp;E stained images. To reduce interference from non-tumor areas, the MTSL-based region attention is proposed to enhances the network's capability to distinguish between tumor and non-tumor regions. Consequently, this augmentation further improves the network's segmentation efficacy for PD-L1 positive and negative regions. Furthermore, the PD-L1 expression regions demonstrate interconnection throughout the tissue section. Leveraging this topological prior knowledge, we integrate a connectivity modeling module (CM module) within the MTSL-based region attention module (MRA module) to enhance the precision of MTSL-based region attention localization. This integration further improves the structural similarity between the segmentation results and the ground truth. Extensive visual and quantitative results demonstrate that our supervised-learning-guided MRA module produces more interpretable attention and the introduced CM module provides accurate positional attention to the MRA module. Compared to other state-of-the-art networks, MCRANet exhibits superior segmentation performance with a dice similarity coefficient (DSC) of 79.6 % on the lung squamous cell carcinoma (LUSC) PD-L1 status dataset.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109357\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014422\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014422","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过免疫组织化学(IHC)对程序性死亡配体 1(PD-L1)进行定量分析在指导免疫疗法方面发挥着至关重要的作用。然而,IHC 面临着成本高、耗时长、结果易变等挑战。相反,血红素-伊红(H&E)染色则具有成本效益高、速度快、结果稳定等优点。然而,H&E 染色只能观察细胞形态特征,在检测 PD-L1 等生物标记表达方面缺乏临床适用性。用 IHC 代替 H&E 染色来确定 PD-L1 状态是一项具有临床意义和挑战性的任务。受上述观察结果的启发,我们提出了一种基于多任务监督学习(MTSL)的连接区域注意网络(MCRANet),用于 H&E 染色图像中的 PD-L1 状态分割。为了减少非肿瘤区域的干扰,我们提出了基于 MTSL 的区域注意力,以增强网络区分肿瘤和非肿瘤区域的能力。因此,这一增强功能进一步提高了网络对 PD-L1 阳性和阴性区域的分割效率。此外,PD-L1 表达区域在整个组织切片中显示出相互联系。利用拓扑先验知识,我们在基于 MTSL 的区域关注模块(MRA 模块)中集成了连接建模模块(CM 模块),以提高基于 MTSL 的区域关注定位的精确度。这种整合进一步提高了分割结果与地面实况之间的结构相似性。广泛的视觉和定量结果表明,我们以监督学习为指导的 MRA 模块产生了更多可解释的注意力,而引入的 CM 模块则为 MRA 模块提供了精确的定位注意力。与其他最先进的网络相比,MCRANet 在肺鳞状细胞癌(LUSC)PD-L1 状态数据集上表现出卓越的分割性能,骰子相似系数(DSC)达到 79.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCRANet: MTSL-based connectivity region attention network for PD-L1 status segmentation in H&E stained images
The quantitative analysis of Programmed death-ligand 1 (PD-L1) via Immunohistochemical (IHC) plays a crucial role in guiding immunotherapy. However, IHC faces challenges, including high costs, time consumption and result variability. Conversely, Hematoxylin-Eosin (H&E) staining offers cost-effectiveness, speed, and stable results. Nonetheless, H&E staining, which solely visualizes cellular morphological features, lacks clinical applicability in detecting biomarker expressions like PD-L1. Substituting H&E staining for IHC in determining PD-L1 status is a clinically significant and challenging task. Motivated by above observations, we propose a Multi-Task supervised learning (MTSL)-based connectivity region attention network (MCRANet) for PD-L1 status segmentation in H&E stained images. To reduce interference from non-tumor areas, the MTSL-based region attention is proposed to enhances the network's capability to distinguish between tumor and non-tumor regions. Consequently, this augmentation further improves the network's segmentation efficacy for PD-L1 positive and negative regions. Furthermore, the PD-L1 expression regions demonstrate interconnection throughout the tissue section. Leveraging this topological prior knowledge, we integrate a connectivity modeling module (CM module) within the MTSL-based region attention module (MRA module) to enhance the precision of MTSL-based region attention localization. This integration further improves the structural similarity between the segmentation results and the ground truth. Extensive visual and quantitative results demonstrate that our supervised-learning-guided MRA module produces more interpretable attention and the introduced CM module provides accurate positional attention to the MRA module. Compared to other state-of-the-art networks, MCRANet exhibits superior segmentation performance with a dice similarity coefficient (DSC) of 79.6 % on the lung squamous cell carcinoma (LUSC) PD-L1 status dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1