人工智能辅助检测和定位脊柱转移病灶。

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2024-11-03 DOI:10.3390/diagnostics14212458
Edgars Edelmers, Artūrs Ņikuļins, Klinta Luīze Sprūdža, Patrīcija Stapulone, Niks Saimons Pūce, Elizabete Skrebele, Everita Elīna Siņicina, Viktorija Cīrule, Ance Kazuša, Katrina Boločko
{"title":"人工智能辅助检测和定位脊柱转移病灶。","authors":"Edgars Edelmers, Artūrs Ņikuļins, Klinta Luīze Sprūdža, Patrīcija Stapulone, Niks Saimons Pūce, Elizabete Skrebele, Everita Elīna Siņicina, Viktorija Cīrule, Ance Kazuša, Katrina Boločko","doi":"10.3390/diagnostics14212458","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The integration of machine learning and radiomics in medical imaging has significantly advanced diagnostic and prognostic capabilities in healthcare. This study focuses on developing and validating an artificial intelligence (AI) model using U-Net architectures for the accurate detection and segmentation of spinal metastases from computed tomography (CT) images, addressing both osteolytic and osteoblastic lesions.</p><p><strong>Methods: </strong>Our methodology employs multiple variations of the U-Net architecture and utilizes two distinct datasets: one consisting of 115 polytrauma patients for vertebra segmentation and another comprising 38 patients with documented spinal metastases for lesion detection.</p><p><strong>Results: </strong>The model demonstrated strong performance in vertebra segmentation, achieving Dice Similarity Coefficient (DSC) values between 0.87 and 0.96. For metastasis segmentation, the model achieved a DSC of 0.71 and an F-beta score of 0.68 for lytic lesions but struggled with sclerotic lesions, obtaining a DSC of 0.61 and an F-beta score of 0.57, reflecting challenges in detecting dense, subtle bone alterations. Despite these limitations, the model successfully identified isolated metastatic lesions beyond the spine, such as in the sternum, indicating potential for broader skeletal metastasis detection.</p><p><strong>Conclusions: </strong>The study concludes that AI-based models can augment radiologists' capabilities by providing reliable second-opinion tools, though further refinements and diverse training data are needed for optimal performance, particularly for sclerotic lesion segmentation. The annotated CT dataset produced and shared in this research serves as a valuable resource for future advancements.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"14 21","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545154/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-Assisted Detection and Localization of Spinal Metastatic Lesions.\",\"authors\":\"Edgars Edelmers, Artūrs Ņikuļins, Klinta Luīze Sprūdža, Patrīcija Stapulone, Niks Saimons Pūce, Elizabete Skrebele, Everita Elīna Siņicina, Viktorija Cīrule, Ance Kazuša, Katrina Boločko\",\"doi\":\"10.3390/diagnostics14212458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The integration of machine learning and radiomics in medical imaging has significantly advanced diagnostic and prognostic capabilities in healthcare. This study focuses on developing and validating an artificial intelligence (AI) model using U-Net architectures for the accurate detection and segmentation of spinal metastases from computed tomography (CT) images, addressing both osteolytic and osteoblastic lesions.</p><p><strong>Methods: </strong>Our methodology employs multiple variations of the U-Net architecture and utilizes two distinct datasets: one consisting of 115 polytrauma patients for vertebra segmentation and another comprising 38 patients with documented spinal metastases for lesion detection.</p><p><strong>Results: </strong>The model demonstrated strong performance in vertebra segmentation, achieving Dice Similarity Coefficient (DSC) values between 0.87 and 0.96. For metastasis segmentation, the model achieved a DSC of 0.71 and an F-beta score of 0.68 for lytic lesions but struggled with sclerotic lesions, obtaining a DSC of 0.61 and an F-beta score of 0.57, reflecting challenges in detecting dense, subtle bone alterations. Despite these limitations, the model successfully identified isolated metastatic lesions beyond the spine, such as in the sternum, indicating potential for broader skeletal metastasis detection.</p><p><strong>Conclusions: </strong>The study concludes that AI-based models can augment radiologists' capabilities by providing reliable second-opinion tools, though further refinements and diverse training data are needed for optimal performance, particularly for sclerotic lesion segmentation. The annotated CT dataset produced and shared in this research serves as a valuable resource for future advancements.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545154/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics14212458\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics14212458","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:医学影像中机器学习与放射组学的结合大大提高了医疗诊断和预后能力。本研究的重点是开发和验证一种使用 U-Net 架构的人工智能(AI)模型,用于从计算机断层扫描(CT)图像中准确检测和分割脊柱转移瘤,同时处理溶骨性和成骨性病变:我们的方法采用了 U-Net 架构的多种变体,并使用了两个不同的数据集:一个数据集由 115 名多发性创伤患者组成,用于椎体分割;另一个数据集由 38 名有脊柱转移记录的患者组成,用于病灶检测:结果:该模型在椎骨分割方面表现出色,骰子相似系数(DSC)值介于 0.87 和 0.96 之间。在转移灶分割方面,该模型对溶解性病变的 DSC 值为 0.71,F-beta 得分为 0.68,但对硬化性病变的 DSC 值为 0.61,F-beta 得分为 0.57,反映出在检测致密、细微骨质改变方面存在挑战。尽管存在这些局限性,该模型还是成功识别出了脊柱以外的孤立转移病灶,如胸骨,这表明该模型具有更广泛的骨骼转移检测潜力:该研究得出结论:基于人工智能的模型可以提供可靠的第二意见工具,从而增强放射科医生的能力,但要达到最佳性能,尤其是硬化病灶分割,还需要进一步改进和多样化的训练数据。本研究中制作和共享的带注释 CT 数据集是未来发展的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-Assisted Detection and Localization of Spinal Metastatic Lesions.

Objectives: The integration of machine learning and radiomics in medical imaging has significantly advanced diagnostic and prognostic capabilities in healthcare. This study focuses on developing and validating an artificial intelligence (AI) model using U-Net architectures for the accurate detection and segmentation of spinal metastases from computed tomography (CT) images, addressing both osteolytic and osteoblastic lesions.

Methods: Our methodology employs multiple variations of the U-Net architecture and utilizes two distinct datasets: one consisting of 115 polytrauma patients for vertebra segmentation and another comprising 38 patients with documented spinal metastases for lesion detection.

Results: The model demonstrated strong performance in vertebra segmentation, achieving Dice Similarity Coefficient (DSC) values between 0.87 and 0.96. For metastasis segmentation, the model achieved a DSC of 0.71 and an F-beta score of 0.68 for lytic lesions but struggled with sclerotic lesions, obtaining a DSC of 0.61 and an F-beta score of 0.57, reflecting challenges in detecting dense, subtle bone alterations. Despite these limitations, the model successfully identified isolated metastatic lesions beyond the spine, such as in the sternum, indicating potential for broader skeletal metastasis detection.

Conclusions: The study concludes that AI-based models can augment radiologists' capabilities by providing reliable second-opinion tools, though further refinements and diverse training data are needed for optimal performance, particularly for sclerotic lesion segmentation. The annotated CT dataset produced and shared in this research serves as a valuable resource for future advancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer. Monitoring and Management of Cytomegalovirus Reactivations After Allogeneic Hematopoietic Stem Cell Transplantation in Children: Experience from a Single Pediatric Center. Molecular Imaging Biomarkers for Early Cancer Detection: A Systematic Review of Emerging Technologies and Clinical Applications. AI-Assisted Detection and Localization of Spinal Metastatic Lesions. Evaluating Diagnostic Concordance in Primary Open-Angle Glaucoma Among Academic Glaucoma Subspecialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1