Amir Ajoolabady, Domenico Pratico, Ling Lin, Christos S Mantzoros, Suhad Bahijri, Jaakko Tuomilehto, Jun Ren
{"title":"动脉粥样硬化中的炎症:病理生理学和机制。","authors":"Amir Ajoolabady, Domenico Pratico, Ling Lin, Christos S Mantzoros, Suhad Bahijri, Jaakko Tuomilehto, Jun Ren","doi":"10.1038/s41419-024-07166-8","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 11","pages":"817"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555284/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inflammation in atherosclerosis: pathophysiology and mechanisms.\",\"authors\":\"Amir Ajoolabady, Domenico Pratico, Ling Lin, Christos S Mantzoros, Suhad Bahijri, Jaakko Tuomilehto, Jun Ren\",\"doi\":\"10.1038/s41419-024-07166-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"15 11\",\"pages\":\"817\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-024-07166-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07166-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Inflammation in atherosclerosis: pathophysiology and mechanisms.
Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism