通过 "质量源于设计 "方法,利用水分散聚合技术开发拉米夫定-聚丙烯腈纳米粒子。

IF 1.5 4区 医学 Q4 CHEMISTRY, MEDICINAL Chemical & pharmaceutical bulletin Pub Date : 2024-01-01 DOI:10.1248/cpb.c24-00334
Pathuri Raghuveer, Dadi Shanthi, Thummala Uday Kumar, Potti Lakshmana Rao, Koreddi Sriharsha, Desavathu Madhuri, Vijaya Kishore Kanakaraju, Grandhi Srikar
{"title":"通过 \"质量源于设计 \"方法,利用水分散聚合技术开发拉米夫定-聚丙烯腈纳米粒子。","authors":"Pathuri Raghuveer, Dadi Shanthi, Thummala Uday Kumar, Potti Lakshmana Rao, Koreddi Sriharsha, Desavathu Madhuri, Vijaya Kishore Kanakaraju, Grandhi Srikar","doi":"10.1248/cpb.c24-00334","DOIUrl":null,"url":null,"abstract":"<p><p>The development of polymeric nanoparticles (NPs) from preformed polymers usually requires the use of organic solvents and is more expensive. Hence, in this work, the development of polymeric nanoparticles by in situ aqueous dispersion polymerization from the monomers was set as an objective. Acrylonitrile monomer based polymeric NPs comprising Lamivudine (LMV) as a model drug were prepared using the aqueous dispersion polymerization technique. A quality by design approach was applied to optimise various formulation and process factors viz. monomer concentration, initiator concentration, stabilizer concentration and polymerization temperature. Polymerization time (PT), entrapment efficiency (EE), particle size (PS), and drug release rate constant (k) were taken as the responses to define the quality of the prepared NPs. Design of experiments analysis followed by optimization was performed to identify the optimized combination of the factors. Later, the optimized formulation was studied for the physical state of the LMV in the nanoparticles, surface morphology of the NPs and cytotoxicity studies. The optimized formulation was found to have 91.7 min. of PT, 81.4% of EE, 253 nm of PS and a k value of 0.262 h<sup>-1</sup> (18 h to release 99%). The cytotoxicity studies indicated that the NPs were highly safe to use. These results altogether inferred that LMV contained NPs were developed effectively from the acrylonitrile monomer by the aqueous dispersion polymerization method.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"72 11","pages":"950-960"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous Dispersion Polymerization for the Development of Lamivudine-Polyacrylonitrile Nanoparticles through Quality by Design Approach.\",\"authors\":\"Pathuri Raghuveer, Dadi Shanthi, Thummala Uday Kumar, Potti Lakshmana Rao, Koreddi Sriharsha, Desavathu Madhuri, Vijaya Kishore Kanakaraju, Grandhi Srikar\",\"doi\":\"10.1248/cpb.c24-00334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of polymeric nanoparticles (NPs) from preformed polymers usually requires the use of organic solvents and is more expensive. Hence, in this work, the development of polymeric nanoparticles by in situ aqueous dispersion polymerization from the monomers was set as an objective. Acrylonitrile monomer based polymeric NPs comprising Lamivudine (LMV) as a model drug were prepared using the aqueous dispersion polymerization technique. A quality by design approach was applied to optimise various formulation and process factors viz. monomer concentration, initiator concentration, stabilizer concentration and polymerization temperature. Polymerization time (PT), entrapment efficiency (EE), particle size (PS), and drug release rate constant (k) were taken as the responses to define the quality of the prepared NPs. Design of experiments analysis followed by optimization was performed to identify the optimized combination of the factors. Later, the optimized formulation was studied for the physical state of the LMV in the nanoparticles, surface morphology of the NPs and cytotoxicity studies. The optimized formulation was found to have 91.7 min. of PT, 81.4% of EE, 253 nm of PS and a k value of 0.262 h<sup>-1</sup> (18 h to release 99%). The cytotoxicity studies indicated that the NPs were highly safe to use. These results altogether inferred that LMV contained NPs were developed effectively from the acrylonitrile monomer by the aqueous dispersion polymerization method.</p>\",\"PeriodicalId\":9773,\"journal\":{\"name\":\"Chemical & pharmaceutical bulletin\",\"volume\":\"72 11\",\"pages\":\"950-960\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/cpb.c24-00334\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c24-00334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

利用预成型聚合物开发聚合物纳米颗粒(NPs)通常需要使用有机溶剂,而且成本较高。因此,本研究的目标是利用单体原位水分散聚合法开发聚合物纳米粒子。利用水分散聚合技术制备了以丙烯腈单体为基础的聚合物 NPs,其中包含作为模型药物的拉米夫定(LMV)。采用质量设计法优化了各种配方和工艺因素,即单体浓度、引发剂浓度、稳定剂浓度和聚合温度。聚合时间 (PT)、夹带效率 (EE)、粒度 (PS) 和药物释放速率常数 (k) 被用作确定所制备 NPs 质量的反应。通过实验设计分析和优化,确定了各因素的优化组合。随后,对优化配方进行了纳米颗粒中 LMV 的物理状态、NPs 表面形态和细胞毒性研究。结果发现,优化配方的 PT 值为 91.7 分钟,EE 值为 81.4%,PS 值为 253 nm,k 值为 0.262 h-1(18 h 释放 99%)。细胞毒性研究表明,NPs 的使用非常安全。这些结果综合推断,利用水分散聚合法,从丙烯腈单体中有效地开发出了含有 LMV 的 NPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aqueous Dispersion Polymerization for the Development of Lamivudine-Polyacrylonitrile Nanoparticles through Quality by Design Approach.

The development of polymeric nanoparticles (NPs) from preformed polymers usually requires the use of organic solvents and is more expensive. Hence, in this work, the development of polymeric nanoparticles by in situ aqueous dispersion polymerization from the monomers was set as an objective. Acrylonitrile monomer based polymeric NPs comprising Lamivudine (LMV) as a model drug were prepared using the aqueous dispersion polymerization technique. A quality by design approach was applied to optimise various formulation and process factors viz. monomer concentration, initiator concentration, stabilizer concentration and polymerization temperature. Polymerization time (PT), entrapment efficiency (EE), particle size (PS), and drug release rate constant (k) were taken as the responses to define the quality of the prepared NPs. Design of experiments analysis followed by optimization was performed to identify the optimized combination of the factors. Later, the optimized formulation was studied for the physical state of the LMV in the nanoparticles, surface morphology of the NPs and cytotoxicity studies. The optimized formulation was found to have 91.7 min. of PT, 81.4% of EE, 253 nm of PS and a k value of 0.262 h-1 (18 h to release 99%). The cytotoxicity studies indicated that the NPs were highly safe to use. These results altogether inferred that LMV contained NPs were developed effectively from the acrylonitrile monomer by the aqueous dispersion polymerization method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
132
审稿时长
1.7 months
期刊介绍: The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below. Topics: Organic chemistry In silico science Inorganic chemistry Pharmacognosy Health statistics Forensic science Biochemistry Pharmacology Pharmaceutical care and science Medicinal chemistry Analytical chemistry Physical pharmacy Natural product chemistry Toxicology Environmental science Molecular and cellular biology Biopharmacy and pharmacokinetics Pharmaceutical education Chemical biology Physical chemistry Pharmaceutical engineering Epidemiology Hygiene Regulatory science Immunology and microbiology Clinical pharmacy Miscellaneous.
期刊最新文献
Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities. Comparative Analysis of Needleless and Needle-Based Electrospinning Methods for Polyamide 6: A Technical Note. Synthesis and Structure-Activity Relationships of Novel Benzofuran Derivatives with Osteoblast Differentiation-Promoting Activity. Preparation of a Stable Indomethacin Supersaturated Solution Using Hydrophobically Modified Hydroxypropylmethylcellulose and α-Cyclodextrin. Toward the Synthesis of Strychnos Alkaloids: Effective Construction of Fused Cyclohexane and Pyrrolidine Portion of the Strychnos Skeleton via Domino Intermolecular and Intramolecular SN2 Cyclization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1