{"title":"用于神经成像应用的预测性和可解释性人工智能。","authors":"Sekwang Lee, Kwang-Sig Lee","doi":"10.3390/diagnostics14212394","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The aim of this review is to highlight the new advance of predictive and explainable artificial intelligence for neuroimaging applications.</p><p><strong>Methods: </strong>Data came from 30 original studies in PubMed with the following search terms: \"neuroimaging\" (title) together with \"machine learning\" (title) or \"deep learning\" (title). The 30 original studies were eligible according to the following criteria: the participants with the dependent variable of brain image or associated disease; the interventions/comparisons of artificial intelligence; the outcomes of accuracy, the area under the curve (AUC), and/or variable importance; the publication year of 2019 or later; and the publication language of English.</p><p><strong>Results: </strong>The performance outcomes reported were within 58-96 for accuracy (%), 66-97 for sensitivity (%), 76-98 for specificity (%), and 70-98 for the AUC (%). The support vector machine and the convolutional neural network registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma and brain conditions, respectively. Likewise, the random forest delivered the best performance (root mean square error 1) for the regression of brain conditions. The following factors were discovered to be major predictors of brain image or associated disease: (demographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer's disease stage, CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma neurofilament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical volume.</p><p><strong>Conclusion: </strong>Predictive and explainable artificial intelligence provide an effective, non-invasive decision support system for neuroimaging applications.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"14 21","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545799/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive and Explainable Artificial Intelligence for Neuroimaging Applications.\",\"authors\":\"Sekwang Lee, Kwang-Sig Lee\",\"doi\":\"10.3390/diagnostics14212394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The aim of this review is to highlight the new advance of predictive and explainable artificial intelligence for neuroimaging applications.</p><p><strong>Methods: </strong>Data came from 30 original studies in PubMed with the following search terms: \\\"neuroimaging\\\" (title) together with \\\"machine learning\\\" (title) or \\\"deep learning\\\" (title). The 30 original studies were eligible according to the following criteria: the participants with the dependent variable of brain image or associated disease; the interventions/comparisons of artificial intelligence; the outcomes of accuracy, the area under the curve (AUC), and/or variable importance; the publication year of 2019 or later; and the publication language of English.</p><p><strong>Results: </strong>The performance outcomes reported were within 58-96 for accuracy (%), 66-97 for sensitivity (%), 76-98 for specificity (%), and 70-98 for the AUC (%). The support vector machine and the convolutional neural network registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma and brain conditions, respectively. Likewise, the random forest delivered the best performance (root mean square error 1) for the regression of brain conditions. The following factors were discovered to be major predictors of brain image or associated disease: (demographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer's disease stage, CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma neurofilament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical volume.</p><p><strong>Conclusion: </strong>Predictive and explainable artificial intelligence provide an effective, non-invasive decision support system for neuroimaging applications.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545799/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics14212394\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics14212394","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Predictive and Explainable Artificial Intelligence for Neuroimaging Applications.
Background: The aim of this review is to highlight the new advance of predictive and explainable artificial intelligence for neuroimaging applications.
Methods: Data came from 30 original studies in PubMed with the following search terms: "neuroimaging" (title) together with "machine learning" (title) or "deep learning" (title). The 30 original studies were eligible according to the following criteria: the participants with the dependent variable of brain image or associated disease; the interventions/comparisons of artificial intelligence; the outcomes of accuracy, the area under the curve (AUC), and/or variable importance; the publication year of 2019 or later; and the publication language of English.
Results: The performance outcomes reported were within 58-96 for accuracy (%), 66-97 for sensitivity (%), 76-98 for specificity (%), and 70-98 for the AUC (%). The support vector machine and the convolutional neural network registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma and brain conditions, respectively. Likewise, the random forest delivered the best performance (root mean square error 1) for the regression of brain conditions. The following factors were discovered to be major predictors of brain image or associated disease: (demographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer's disease stage, CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma neurofilament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical volume.
Conclusion: Predictive and explainable artificial intelligence provide an effective, non-invasive decision support system for neuroimaging applications.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.