{"title":"HYCO-3--一种双重作用的 CO 释放剂/Nrf2 激活剂--的免疫调节作用。","authors":"Goran Stegnjaić, Neda Nikolovski, Suzana Stanisavljević, Milica Lazarević, Miljana Momčilović, Roberta Foresti, Roberto Motterlini, Đorđe Miljković","doi":"10.1093/cei/uxae100","DOIUrl":null,"url":null,"abstract":"<p><p>HYCOs are hybrid molecules consisting of activators of the transcription factor Nrf2 conjugated to carbon monoxide (CO)-releasing moieties. These \"dual action\" compounds have been designed to mimic the activity of heme oxygenase-1 (HO-1), a stress inducible cytoprotective enzyme that degrades heme to CO which expression is regulated by Nrf2. HYCOs have recently shown efficacy in ameliorating experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, the mechanism(s) of action of HYCOs still remain to be fully investigated. Here, we assessed the effects of HYCO-3, a prototype of these hybrids, on myeloid-derived cells, microglial cells and T lymphocytes obtained from EAE-immunized mice. HYCO-3 exerted immunomodulatory effects on all the examined cell populations by inhibiting the generation of pro-inflammatory cytokines and nitric oxide, and downregulating antigen-presenting capacity of these cells. The observed effects support the view that HYCOs are promising candidates to be developed for the treatment of autoimmune and chronic inflammatory disorders.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunomodulatory effects of HYCO-3, a dual action CO-releaser/Nrf2 activator.\",\"authors\":\"Goran Stegnjaić, Neda Nikolovski, Suzana Stanisavljević, Milica Lazarević, Miljana Momčilović, Roberta Foresti, Roberto Motterlini, Đorđe Miljković\",\"doi\":\"10.1093/cei/uxae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HYCOs are hybrid molecules consisting of activators of the transcription factor Nrf2 conjugated to carbon monoxide (CO)-releasing moieties. These \\\"dual action\\\" compounds have been designed to mimic the activity of heme oxygenase-1 (HO-1), a stress inducible cytoprotective enzyme that degrades heme to CO which expression is regulated by Nrf2. HYCOs have recently shown efficacy in ameliorating experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, the mechanism(s) of action of HYCOs still remain to be fully investigated. Here, we assessed the effects of HYCO-3, a prototype of these hybrids, on myeloid-derived cells, microglial cells and T lymphocytes obtained from EAE-immunized mice. HYCO-3 exerted immunomodulatory effects on all the examined cell populations by inhibiting the generation of pro-inflammatory cytokines and nitric oxide, and downregulating antigen-presenting capacity of these cells. The observed effects support the view that HYCOs are promising candidates to be developed for the treatment of autoimmune and chronic inflammatory disorders.</p>\",\"PeriodicalId\":10268,\"journal\":{\"name\":\"Clinical and experimental immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and experimental immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cei/uxae100\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxae100","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Immunomodulatory effects of HYCO-3, a dual action CO-releaser/Nrf2 activator.
HYCOs are hybrid molecules consisting of activators of the transcription factor Nrf2 conjugated to carbon monoxide (CO)-releasing moieties. These "dual action" compounds have been designed to mimic the activity of heme oxygenase-1 (HO-1), a stress inducible cytoprotective enzyme that degrades heme to CO which expression is regulated by Nrf2. HYCOs have recently shown efficacy in ameliorating experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, the mechanism(s) of action of HYCOs still remain to be fully investigated. Here, we assessed the effects of HYCO-3, a prototype of these hybrids, on myeloid-derived cells, microglial cells and T lymphocytes obtained from EAE-immunized mice. HYCO-3 exerted immunomodulatory effects on all the examined cell populations by inhibiting the generation of pro-inflammatory cytokines and nitric oxide, and downregulating antigen-presenting capacity of these cells. The observed effects support the view that HYCOs are promising candidates to be developed for the treatment of autoimmune and chronic inflammatory disorders.
期刊介绍:
Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice.
The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.