{"title":"耐青蒿素的恶性疟原虫 Kelch13 突变体蛋白显示出血红素结合亲和力降低和青蒿素激活能力下降。","authors":"Abdur Rahman, Sabahat Tamseel, Smritikana Dutta, Nawaal Khan, Mohammad Faaiz, Harshita Rastogi, Jyoti Rani Nath, Kasturi Haldar, Pramit Chowdhury, Ashish, Souvik Bhattacharjee","doi":"10.1038/s42003-024-07178-2","DOIUrl":null,"url":null,"abstract":"The potency of frontline antimalarial drug artemisinin (ART) derivatives is triggered by heme-induced cleavage of the endoperoxide bond to form reactive heme-ART alkoxy radicals and covalent heme-ART adducts, which are highly toxic to the parasite. ART-resistant (ART-R) parasites with mutations in the Plasmodium falciparum Kelch-containing protein Kelch13 (PfKekch13) exhibit impaired hemoglobin uptake, reduced yield of hemoglobin-derived heme, and thus decreased ART activation. However, any direct involvement of PfKelch13 in heme-mediated ART activation has not been reported. Here, we show that the purified recombinant PfKelch13 wild-type (WT) protein displays measurable binding affinity for iron and heme, the main effectors for ART activation. The heme-binding property is also exhibited by the native PfKelch13 protein from parasite culture. The two ART-R recombinant PfKelch13 mutants (C580Y and R539T) display weaker heme binding affinities compared to the ART-sensitive WT and A578S mutant proteins, which further translates into reduced yield of heme-ART derivatives when ART is incubated with the heme molecules bound to the mutant PfKelch13 proteins. In conclusion, this study provides the first evidence for ART activation via the heme-binding propensity of PfKelch13. This mechanism may contribute to the modulation of ART-R levels in malaria parasites through a novel function of PfKelch13. Elucidation of heme binding affinity and artemisinin activation by the Plasmodium falciparum Kelch13 protein variants.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":" ","pages":"1-23"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42003-024-07178-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Artemisinin-resistant Plasmodium falciparum Kelch13 mutant proteins display reduced heme-binding affinity and decreased artemisinin activation\",\"authors\":\"Abdur Rahman, Sabahat Tamseel, Smritikana Dutta, Nawaal Khan, Mohammad Faaiz, Harshita Rastogi, Jyoti Rani Nath, Kasturi Haldar, Pramit Chowdhury, Ashish, Souvik Bhattacharjee\",\"doi\":\"10.1038/s42003-024-07178-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potency of frontline antimalarial drug artemisinin (ART) derivatives is triggered by heme-induced cleavage of the endoperoxide bond to form reactive heme-ART alkoxy radicals and covalent heme-ART adducts, which are highly toxic to the parasite. ART-resistant (ART-R) parasites with mutations in the Plasmodium falciparum Kelch-containing protein Kelch13 (PfKekch13) exhibit impaired hemoglobin uptake, reduced yield of hemoglobin-derived heme, and thus decreased ART activation. However, any direct involvement of PfKelch13 in heme-mediated ART activation has not been reported. Here, we show that the purified recombinant PfKelch13 wild-type (WT) protein displays measurable binding affinity for iron and heme, the main effectors for ART activation. The heme-binding property is also exhibited by the native PfKelch13 protein from parasite culture. The two ART-R recombinant PfKelch13 mutants (C580Y and R539T) display weaker heme binding affinities compared to the ART-sensitive WT and A578S mutant proteins, which further translates into reduced yield of heme-ART derivatives when ART is incubated with the heme molecules bound to the mutant PfKelch13 proteins. In conclusion, this study provides the first evidence for ART activation via the heme-binding propensity of PfKelch13. This mechanism may contribute to the modulation of ART-R levels in malaria parasites through a novel function of PfKelch13. Elucidation of heme binding affinity and artemisinin activation by the Plasmodium falciparum Kelch13 protein variants.\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42003-024-07178-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s42003-024-07178-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07178-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
一线抗疟药物青蒿素(ART)衍生物的药效是由血红素诱导的内过氧键裂解形成活性血红素-ART 烷氧基自由基和共价血红素-ART 加合物引发的,后者对寄生虫有剧毒。恶性疟原虫含 Kelch 蛋白 Kelch13(PfKekch13)发生突变的抗逆转录病毒寄生虫(ART-R)表现出血红蛋白摄取受损、血红蛋白衍生血红素产量减少,从而降低了 ART 的活化。然而,PfKelch13 直接参与血红素介导的 ART 激活的情况尚未见报道。在这里,我们发现纯化的重组 PfKelch13 野生型(WT)蛋白与铁和血红素(ART 激活的主要效应物)具有可测量的结合亲和力。寄生虫培养物中的原生 PfKelch13 蛋白也具有血红素结合特性。与 ART 敏感的 WT 和 A578S 突变蛋白相比,两个 ART-R 重组 PfKelch13 突变体(C580Y 和 R539T)显示出较弱的血红素结合亲和力,当 ART 与结合到突变 PfKelch13 蛋白上的血红素分子孵育时,这进一步转化为血红素-ART 衍生物产量的减少。总之,本研究首次提供了通过 PfKelch13 的血红素结合倾向激活 ART 的证据。这一机制可能有助于通过 PfKelch13 的新功能调节疟原虫体内的 ART-R 水平。
The potency of frontline antimalarial drug artemisinin (ART) derivatives is triggered by heme-induced cleavage of the endoperoxide bond to form reactive heme-ART alkoxy radicals and covalent heme-ART adducts, which are highly toxic to the parasite. ART-resistant (ART-R) parasites with mutations in the Plasmodium falciparum Kelch-containing protein Kelch13 (PfKekch13) exhibit impaired hemoglobin uptake, reduced yield of hemoglobin-derived heme, and thus decreased ART activation. However, any direct involvement of PfKelch13 in heme-mediated ART activation has not been reported. Here, we show that the purified recombinant PfKelch13 wild-type (WT) protein displays measurable binding affinity for iron and heme, the main effectors for ART activation. The heme-binding property is also exhibited by the native PfKelch13 protein from parasite culture. The two ART-R recombinant PfKelch13 mutants (C580Y and R539T) display weaker heme binding affinities compared to the ART-sensitive WT and A578S mutant proteins, which further translates into reduced yield of heme-ART derivatives when ART is incubated with the heme molecules bound to the mutant PfKelch13 proteins. In conclusion, this study provides the first evidence for ART activation via the heme-binding propensity of PfKelch13. This mechanism may contribute to the modulation of ART-R levels in malaria parasites through a novel function of PfKelch13. Elucidation of heme binding affinity and artemisinin activation by the Plasmodium falciparum Kelch13 protein variants.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.