鉴别深部浸润性结直肠癌的相关区域存在差异:计算机辅助诊断与内镜专家的对比。

IF 2.2 Q3 GASTROENTEROLOGY & HEPATOLOGY Endoscopy International Open Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI:10.1055/a-2401-6611
Yuki Nakajima, Daiki Nemoto, Zhe Guo, Peng Boyuan, Zhang Ruiyao, Shinichi Katsuki, Takahito Takezawa, Ryo Maemoto, Keisuke Kawasaki, Ken Inoue, Takashi Akutagawa, Hirohito Tanaka, Koichiro Sato, Teppei Omori, Yoshikazu Hayashi, Yasuyuki Miyakura, Takayuki Matsumoto, Naohisa Yoshida, Motohiro Esaki, Toshio Uraoka, Hiroyuki Kato, Yuji Inoue, Hironori Yamamoto, Xin Zhu, Kazutomo Togashi
{"title":"鉴别深部浸润性结直肠癌的相关区域存在差异:计算机辅助诊断与内镜专家的对比。","authors":"Yuki Nakajima, Daiki Nemoto, Zhe Guo, Peng Boyuan, Zhang Ruiyao, Shinichi Katsuki, Takahito Takezawa, Ryo Maemoto, Keisuke Kawasaki, Ken Inoue, Takashi Akutagawa, Hirohito Tanaka, Koichiro Sato, Teppei Omori, Yoshikazu Hayashi, Yasuyuki Miyakura, Takayuki Matsumoto, Naohisa Yoshida, Motohiro Esaki, Toshio Uraoka, Hiroyuki Kato, Yuji Inoue, Hironori Yamamoto, Xin Zhu, Kazutomo Togashi","doi":"10.1055/a-2401-6611","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and study aims</b> Diagnostic performance of a computer-aided diagnosis (CAD) system for deep submucosally invasive (T1b) colorectal cancer was excellent, but the \"regions of interest\" (ROI) within images are not obvious. Class activation mapping (CAM) enables identification of the ROI that CAD utilizes for diagnosis. The purpose of this study was a quantitative investigation of the difference between CAD and endoscopists. <b>Patients and methods</b> Endoscopic images collected for validation of a previous study were used, including histologically proven T1b colorectal cancers (n = 82; morphology: flat 36, polypoid 46; median maximum diameter 20 mm, interquartile range 15-25 mm; histological subtype: papillary 5, well 51, moderate 24, poor 2; location: proximal colon 26, distal colon 27, rectum 29). Application of CAM was limited to one white light endoscopic image (per lesion) to demonstrate findings of T1b cancers. The CAM images were generated from the weights of the previously fine-tuned ResNet50. Two expert endoscopists depicted the ROI in identical images. Concordance of the ROI was rated by intersection over union (IoU) analysis. <b>Results</b> Pixel counts of ROIs were significantly lower using 165K[x103] [108K-227K] than by endoscopists (300K [208K-440K]; <i>P</i> < 0.0001) and median [interquartile] of the IoU was 0.198 [0.024-0.349]. IoU was significantly higher in correctly identified lesions (n = 54, 0.213 [0.116-0.364]) than incorrect ones (n=28, 0.070 [0.000-0.2750, <i>P</i> = 0.033). <b>Concusions</b> IoU was larger in correctly diagnosed T1b colorectal cancers. Optimal annotation of the ROI may be the key to improving diagnostic sensitivity of CAD for T1b colorectal cancers.</p>","PeriodicalId":11671,"journal":{"name":"Endoscopy International Open","volume":"12 11","pages":"E1260-E1266"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543284/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differences in regions of interest to identify deeply invasive colorectal cancers: Computer-aided diagnosis vs expert endoscopists.\",\"authors\":\"Yuki Nakajima, Daiki Nemoto, Zhe Guo, Peng Boyuan, Zhang Ruiyao, Shinichi Katsuki, Takahito Takezawa, Ryo Maemoto, Keisuke Kawasaki, Ken Inoue, Takashi Akutagawa, Hirohito Tanaka, Koichiro Sato, Teppei Omori, Yoshikazu Hayashi, Yasuyuki Miyakura, Takayuki Matsumoto, Naohisa Yoshida, Motohiro Esaki, Toshio Uraoka, Hiroyuki Kato, Yuji Inoue, Hironori Yamamoto, Xin Zhu, Kazutomo Togashi\",\"doi\":\"10.1055/a-2401-6611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background and study aims</b> Diagnostic performance of a computer-aided diagnosis (CAD) system for deep submucosally invasive (T1b) colorectal cancer was excellent, but the \\\"regions of interest\\\" (ROI) within images are not obvious. Class activation mapping (CAM) enables identification of the ROI that CAD utilizes for diagnosis. The purpose of this study was a quantitative investigation of the difference between CAD and endoscopists. <b>Patients and methods</b> Endoscopic images collected for validation of a previous study were used, including histologically proven T1b colorectal cancers (n = 82; morphology: flat 36, polypoid 46; median maximum diameter 20 mm, interquartile range 15-25 mm; histological subtype: papillary 5, well 51, moderate 24, poor 2; location: proximal colon 26, distal colon 27, rectum 29). Application of CAM was limited to one white light endoscopic image (per lesion) to demonstrate findings of T1b cancers. The CAM images were generated from the weights of the previously fine-tuned ResNet50. Two expert endoscopists depicted the ROI in identical images. Concordance of the ROI was rated by intersection over union (IoU) analysis. <b>Results</b> Pixel counts of ROIs were significantly lower using 165K[x103] [108K-227K] than by endoscopists (300K [208K-440K]; <i>P</i> < 0.0001) and median [interquartile] of the IoU was 0.198 [0.024-0.349]. IoU was significantly higher in correctly identified lesions (n = 54, 0.213 [0.116-0.364]) than incorrect ones (n=28, 0.070 [0.000-0.2750, <i>P</i> = 0.033). <b>Concusions</b> IoU was larger in correctly diagnosed T1b colorectal cancers. Optimal annotation of the ROI may be the key to improving diagnostic sensitivity of CAD for T1b colorectal cancers.</p>\",\"PeriodicalId\":11671,\"journal\":{\"name\":\"Endoscopy International Open\",\"volume\":\"12 11\",\"pages\":\"E1260-E1266\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endoscopy International Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2401-6611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endoscopy International Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2401-6611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和研究目的 计算机辅助诊断(CAD)系统对粘膜下深部浸润性(T1b)结直肠癌的诊断效果非常好,但图像中的 "感兴趣区"(ROI)并不明显。类激活图谱(CAM)可以确定 CAD 用于诊断的 ROI。本研究的目的是对 CAD 和内镜医师之间的差异进行定量研究。患者和方法 使用为验证之前研究而收集的内窥镜图像,包括组织学证实的 T1b 结直肠癌(n = 82;形态:扁平 36,息肉 46;中位最大直径 20 毫米,四分位间范围 15-25 毫米;组织学亚型:乳头状 5,良好 51,中等 24,差 2;位置:近端结肠 26,远端结肠 27,直肠 29)。CAM 的应用仅限于一张白光内窥镜图像(每个病灶),以显示 T1b 癌症的发现情况。CAM 图像由先前微调的 ResNet50 的权重生成。两名内窥镜专家在相同的图像中描绘出 ROI。通过交集大于联合(IoU)分析对 ROI 的一致性进行评定。结果 使用165K[x103] [108K-227K] 的ROI像素计数明显低于内镜医师(300K [208K-440K]; P < 0.0001),IoU的中位数[四分位间]为0.198 [0.024-0.349]。正确识别病灶的 IoU(n=54,0.213 [0.116-0.364])明显高于错误识别的病灶(n=28,0.070 [0.000-0.2750,P = 0.033)。在正确诊断的 T1b 结直肠癌中,融合 IoU 更大。ROI的最佳标注可能是提高CAD对T1b结直肠癌诊断灵敏度的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differences in regions of interest to identify deeply invasive colorectal cancers: Computer-aided diagnosis vs expert endoscopists.

Background and study aims Diagnostic performance of a computer-aided diagnosis (CAD) system for deep submucosally invasive (T1b) colorectal cancer was excellent, but the "regions of interest" (ROI) within images are not obvious. Class activation mapping (CAM) enables identification of the ROI that CAD utilizes for diagnosis. The purpose of this study was a quantitative investigation of the difference between CAD and endoscopists. Patients and methods Endoscopic images collected for validation of a previous study were used, including histologically proven T1b colorectal cancers (n = 82; morphology: flat 36, polypoid 46; median maximum diameter 20 mm, interquartile range 15-25 mm; histological subtype: papillary 5, well 51, moderate 24, poor 2; location: proximal colon 26, distal colon 27, rectum 29). Application of CAM was limited to one white light endoscopic image (per lesion) to demonstrate findings of T1b cancers. The CAM images were generated from the weights of the previously fine-tuned ResNet50. Two expert endoscopists depicted the ROI in identical images. Concordance of the ROI was rated by intersection over union (IoU) analysis. Results Pixel counts of ROIs were significantly lower using 165K[x103] [108K-227K] than by endoscopists (300K [208K-440K]; P < 0.0001) and median [interquartile] of the IoU was 0.198 [0.024-0.349]. IoU was significantly higher in correctly identified lesions (n = 54, 0.213 [0.116-0.364]) than incorrect ones (n=28, 0.070 [0.000-0.2750, P = 0.033). Concusions IoU was larger in correctly diagnosed T1b colorectal cancers. Optimal annotation of the ROI may be the key to improving diagnostic sensitivity of CAD for T1b colorectal cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endoscopy International Open
Endoscopy International Open GASTROENTEROLOGY & HEPATOLOGY-
自引率
3.80%
发文量
270
期刊最新文献
New cholangiopancreatoscopy-assisted diagnosis of disconnected pancreatic cuct syndrome and bridging disconnected pancreatic duct. Colonoscopy is not mammography: Challenges of applying the Duty of Candor. Complete extraction of main pancreatic duct residual and microstones using an 8-wire basket catheter. Costs and benefits of a formal quality framework for colonoscopy: Economic evaluation. Defining standards for fluoroscopy in gastrointestinal endoscopy using Delphi methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1