Daniel Baena, Ella Gabitov, Laura B. Ray, Julien Doyon, Stuart M. Fogel
{"title":"运动学习可促进特定区域的纺锤体-慢波耦合大脑记忆再激活。","authors":"Daniel Baena, Ella Gabitov, Laura B. Ray, Julien Doyon, Stuart M. Fogel","doi":"10.1038/s42003-024-07197-z","DOIUrl":null,"url":null,"abstract":"Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning. Utilizing simultaneous EEG-fMRI during sleep, our findings revealed that memory reactivation occured time-locked to coupled SW-SP complexes, and specifically in areas critical for motor sequence learning. Notably, these reactivations were confined to the hemisphere actively involved in learning the task. This regional specificity highlights a precise and targeted neural mechanism, underscoring the crucial role of SW-SP coupling. In addition, we observed double-dissociation whereby primary sensory areas were recruited time-locked to uncoupled spindles; suggesting a role for uncoupled spindles in sleep maintenance. These findings advance our understanding the functional significance of SW-SP coupling for enhancing memory in a regionally-specific manner, that is functionally dissociable from uncoupled spindles. Simultaneous EEG-fMRI shows that slow wave-coupled sleep spindles promote region-specific memory reactivation after motor learning, revealing distinct roles for coupled vs. uncoupled spindles in sleep-dependent memory consolidation.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":" ","pages":"1-13"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557691/pdf/","citationCount":"0","resultStr":"{\"title\":\"Motor learning promotes regionally-specific spindle-slow wave coupled cerebral memory reactivation\",\"authors\":\"Daniel Baena, Ella Gabitov, Laura B. Ray, Julien Doyon, Stuart M. Fogel\",\"doi\":\"10.1038/s42003-024-07197-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning. Utilizing simultaneous EEG-fMRI during sleep, our findings revealed that memory reactivation occured time-locked to coupled SW-SP complexes, and specifically in areas critical for motor sequence learning. Notably, these reactivations were confined to the hemisphere actively involved in learning the task. This regional specificity highlights a precise and targeted neural mechanism, underscoring the crucial role of SW-SP coupling. In addition, we observed double-dissociation whereby primary sensory areas were recruited time-locked to uncoupled spindles; suggesting a role for uncoupled spindles in sleep maintenance. These findings advance our understanding the functional significance of SW-SP coupling for enhancing memory in a regionally-specific manner, that is functionally dissociable from uncoupled spindles. Simultaneous EEG-fMRI shows that slow wave-coupled sleep spindles promote region-specific memory reactivation after motor learning, revealing distinct roles for coupled vs. uncoupled spindles in sleep-dependent memory consolidation.\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s42003-024-07197-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07197-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Motor learning promotes regionally-specific spindle-slow wave coupled cerebral memory reactivation
Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning. Utilizing simultaneous EEG-fMRI during sleep, our findings revealed that memory reactivation occured time-locked to coupled SW-SP complexes, and specifically in areas critical for motor sequence learning. Notably, these reactivations were confined to the hemisphere actively involved in learning the task. This regional specificity highlights a precise and targeted neural mechanism, underscoring the crucial role of SW-SP coupling. In addition, we observed double-dissociation whereby primary sensory areas were recruited time-locked to uncoupled spindles; suggesting a role for uncoupled spindles in sleep maintenance. These findings advance our understanding the functional significance of SW-SP coupling for enhancing memory in a regionally-specific manner, that is functionally dissociable from uncoupled spindles. Simultaneous EEG-fMRI shows that slow wave-coupled sleep spindles promote region-specific memory reactivation after motor learning, revealing distinct roles for coupled vs. uncoupled spindles in sleep-dependent memory consolidation.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.