通过统一结构和功能连接(USFC)建模,绘制出大脑的第一张 "交通图"。

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2024-11-09 DOI:10.1038/s42003-024-07160-y
Arzu C Has Silemek, Haitao Chen, Pascal Sati, Wei Gao
{"title":"通过统一结构和功能连接(USFC)建模,绘制出大脑的第一张 \"交通图\"。","authors":"Arzu C Has Silemek, Haitao Chen, Pascal Sati, Wei Gao","doi":"10.1038/s42003-024-07160-y","DOIUrl":null,"url":null,"abstract":"<p><p>The brain's white matter connections are thought to provide the structural basis for its functional connections between distant brain regions but how our brain selects the best structural routes for functional communications remains poorly understood. In this study, we propose a Unified Structural and Functional Connectivity (USFC) model and use an \"economical assumption\" to create the brain's first \"traffic map\" reflecting how frequently each segment of the brain structural connection is used to achieve the global functional communication system. The resulting USFC map highlights regions in the subcortical, default-mode, and salience networks as the most heavily traversed nodes and a midline frontal-caudate-thalamus-posterior cingulate-visual cortex corridor as the backbone of the whole brain connectivity system. Our results further revealed a striking negative association between structural and functional connectivity strengths in routes supporting negative functional connections, as well as significantly higher efficiency metrics and better predictive performance for cognition in the USFC connectome when compared to structural and functional ones alone. Overall, the proposed USFC model opens up a new window for integrated brain connectome modeling and provides a major leap forward in brain mapping efforts for a better understanding of the brain's fundamental communication mechanisms.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1477"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550382/pdf/","citationCount":"0","resultStr":"{\"title\":\"The brain's first \\\"traffic map\\\" through Unified Structural and Functional Connectivity (USFC) modeling.\",\"authors\":\"Arzu C Has Silemek, Haitao Chen, Pascal Sati, Wei Gao\",\"doi\":\"10.1038/s42003-024-07160-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain's white matter connections are thought to provide the structural basis for its functional connections between distant brain regions but how our brain selects the best structural routes for functional communications remains poorly understood. In this study, we propose a Unified Structural and Functional Connectivity (USFC) model and use an \\\"economical assumption\\\" to create the brain's first \\\"traffic map\\\" reflecting how frequently each segment of the brain structural connection is used to achieve the global functional communication system. The resulting USFC map highlights regions in the subcortical, default-mode, and salience networks as the most heavily traversed nodes and a midline frontal-caudate-thalamus-posterior cingulate-visual cortex corridor as the backbone of the whole brain connectivity system. Our results further revealed a striking negative association between structural and functional connectivity strengths in routes supporting negative functional connections, as well as significantly higher efficiency metrics and better predictive performance for cognition in the USFC connectome when compared to structural and functional ones alone. Overall, the proposed USFC model opens up a new window for integrated brain connectome modeling and provides a major leap forward in brain mapping efforts for a better understanding of the brain's fundamental communication mechanisms.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"7 1\",\"pages\":\"1477\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-024-07160-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07160-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大脑白质连接被认为是远处脑区之间功能连接的结构基础,但人们对大脑如何为功能通信选择最佳结构路线仍然知之甚少。在这项研究中,我们提出了一个统一结构和功能连接(USFC)模型,并利用 "经济假设 "绘制了大脑的第一张 "交通图",反映了大脑结构连接的每个部分在实现全局功能通信系统中的使用频率。由此绘制的 USFC 地图显示,皮层下、默认模式和显著性网络中的区域是被穿越次数最多的节点,而中线额叶-尾状-丘脑-后扣带回-视觉皮层走廊则是整个大脑连接系统的主干。我们的研究结果进一步表明,在支持负功能连接的路径中,结构连接强度和功能连接强度之间存在显著的负相关,而且与单独的结构连接强度和功能连接强度相比,USFC连接组的效率指标明显更高,对认知的预测性能也更好。总之,所提出的 USFC 模型为综合大脑连接组建模打开了一扇新窗口,为大脑绘图工作提供了一次重大飞跃,有助于更好地理解大脑的基本通信机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The brain's first "traffic map" through Unified Structural and Functional Connectivity (USFC) modeling.

The brain's white matter connections are thought to provide the structural basis for its functional connections between distant brain regions but how our brain selects the best structural routes for functional communications remains poorly understood. In this study, we propose a Unified Structural and Functional Connectivity (USFC) model and use an "economical assumption" to create the brain's first "traffic map" reflecting how frequently each segment of the brain structural connection is used to achieve the global functional communication system. The resulting USFC map highlights regions in the subcortical, default-mode, and salience networks as the most heavily traversed nodes and a midline frontal-caudate-thalamus-posterior cingulate-visual cortex corridor as the backbone of the whole brain connectivity system. Our results further revealed a striking negative association between structural and functional connectivity strengths in routes supporting negative functional connections, as well as significantly higher efficiency metrics and better predictive performance for cognition in the USFC connectome when compared to structural and functional ones alone. Overall, the proposed USFC model opens up a new window for integrated brain connectome modeling and provides a major leap forward in brain mapping efforts for a better understanding of the brain's fundamental communication mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Characterization of a widespread sugar phosphate-processing bacterial microcompartment. Allosteric substrate release by a sialic acid TRAP transporter substrate binding protein. Conserved glucokinase regulation in zebrafish confirms therapeutic utility for pharmacologic modulation in diabetes. Ibetazol, a novel inhibitor of importin β1-mediated nuclear import. Lipid-nanoparticle-induced vacuolization in microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1