Hao Li , Dong Yin , Baichuan Li , Chong Liu , Chunxiang Xiong , Qie Fan , Shuyu Yao , Wenwen Huang , Wenhao Li , Jingda Zhang , Hongmian Li
{"title":"基于骨盆X光片诊断强直性脊柱炎的新型半监督学习模型可减少90%的标注成本。","authors":"Hao Li , Dong Yin , Baichuan Li , Chong Liu , Chunxiang Xiong , Qie Fan , Shuyu Yao , Wenwen Huang , Wenhao Li , Jingda Zhang , Hongmian Li","doi":"10.1016/j.compbiomed.2024.109232","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>Our study aims to develop a deep learning-based Ankylosing Spondylitis (AS) diagnostic model that achieves human expert-level performance using only a minimal amount of labeled samples for training, in regions with limited access to expert resources.</div></div><div><h3>Methods:</h3><div>Our semi-supervised diagnostic model for AS was developed using 5389 pelvic radiographs (PXRs) from a single medical center, collected from March 2014 to April 2022. The dataset was split into a training set and a validation set with an 8:2 ratio, allocating 431 labeled images and the remaining 3880 unlabeled images for semi-supervised learning. The model’s performance was evaluated on 982 PXRs from the same center, assessing metrics such as AUC, accuracy, precision, recall, and F1 scores. Interpretability analysis was performed using explainable algorithms to validate the model’s clinical applicability.</div></div><div><h3>Results:</h3><div>Our semi-supervised learning model achieved accuracy, recall, and precision values of 0.891, 0.865, and 0.859, respectively, using only 10% of labeled data from the entire training set, surpassing human expert performance. Extensive interpretability analysis demonstrated the reliability of our model’s predictions, making the deep neural network no longer a black box.</div></div><div><h3>Conclusion:</h3><div>This study marks the first application of semi-supervised learning to diagnose AS using PXRs, achieving a 90% reduction in manual annotation costs. The model showcases robust generalization on an independent test set and delivers reliable diagnostic performance, supported by comprehensive interpretability analysis. This innovative approach paves the way for training high-performance diagnostic models on large datasets with minimal labeled data, heralding a cost-effective future for medical imaging research in big data analytics.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109232"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel semi-supervised learning model based on pelvic radiographs for ankylosing spondylitis diagnosis reduces 90% of annotation cost\",\"authors\":\"Hao Li , Dong Yin , Baichuan Li , Chong Liu , Chunxiang Xiong , Qie Fan , Shuyu Yao , Wenwen Huang , Wenhao Li , Jingda Zhang , Hongmian Li\",\"doi\":\"10.1016/j.compbiomed.2024.109232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective:</h3><div>Our study aims to develop a deep learning-based Ankylosing Spondylitis (AS) diagnostic model that achieves human expert-level performance using only a minimal amount of labeled samples for training, in regions with limited access to expert resources.</div></div><div><h3>Methods:</h3><div>Our semi-supervised diagnostic model for AS was developed using 5389 pelvic radiographs (PXRs) from a single medical center, collected from March 2014 to April 2022. The dataset was split into a training set and a validation set with an 8:2 ratio, allocating 431 labeled images and the remaining 3880 unlabeled images for semi-supervised learning. The model’s performance was evaluated on 982 PXRs from the same center, assessing metrics such as AUC, accuracy, precision, recall, and F1 scores. Interpretability analysis was performed using explainable algorithms to validate the model’s clinical applicability.</div></div><div><h3>Results:</h3><div>Our semi-supervised learning model achieved accuracy, recall, and precision values of 0.891, 0.865, and 0.859, respectively, using only 10% of labeled data from the entire training set, surpassing human expert performance. Extensive interpretability analysis demonstrated the reliability of our model’s predictions, making the deep neural network no longer a black box.</div></div><div><h3>Conclusion:</h3><div>This study marks the first application of semi-supervised learning to diagnose AS using PXRs, achieving a 90% reduction in manual annotation costs. The model showcases robust generalization on an independent test set and delivers reliable diagnostic performance, supported by comprehensive interpretability analysis. This innovative approach paves the way for training high-performance diagnostic models on large datasets with minimal labeled data, heralding a cost-effective future for medical imaging research in big data analytics.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109232\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524013179\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524013179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A novel semi-supervised learning model based on pelvic radiographs for ankylosing spondylitis diagnosis reduces 90% of annotation cost
Objective:
Our study aims to develop a deep learning-based Ankylosing Spondylitis (AS) diagnostic model that achieves human expert-level performance using only a minimal amount of labeled samples for training, in regions with limited access to expert resources.
Methods:
Our semi-supervised diagnostic model for AS was developed using 5389 pelvic radiographs (PXRs) from a single medical center, collected from March 2014 to April 2022. The dataset was split into a training set and a validation set with an 8:2 ratio, allocating 431 labeled images and the remaining 3880 unlabeled images for semi-supervised learning. The model’s performance was evaluated on 982 PXRs from the same center, assessing metrics such as AUC, accuracy, precision, recall, and F1 scores. Interpretability analysis was performed using explainable algorithms to validate the model’s clinical applicability.
Results:
Our semi-supervised learning model achieved accuracy, recall, and precision values of 0.891, 0.865, and 0.859, respectively, using only 10% of labeled data from the entire training set, surpassing human expert performance. Extensive interpretability analysis demonstrated the reliability of our model’s predictions, making the deep neural network no longer a black box.
Conclusion:
This study marks the first application of semi-supervised learning to diagnose AS using PXRs, achieving a 90% reduction in manual annotation costs. The model showcases robust generalization on an independent test set and delivers reliable diagnostic performance, supported by comprehensive interpretability analysis. This innovative approach paves the way for training high-performance diagnostic models on large datasets with minimal labeled data, heralding a cost-effective future for medical imaging research in big data analytics.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.