{"title":"利用从多组学数据中学习到的深度特征改进癌症驱动模块的识别。","authors":"Yang Guo, Lingling Liu, Aofeng Lin","doi":"10.1016/j.compbiomed.2024.109322","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying the cancer driver modules or pathways is crucial to understanding the fundamental mechanisms of cancer occurrence and progression. The rapid abundance of cancer omics data provides unprecedented opportunities to study the driver modules in cancer, and many computational methods have been developed in recent years. However, most existing methods have limitations in considering different types of cancer omics data and cannot effectively learn informative omics features for integrated identification of driver modules. In this paper, we introduce a new integrated framework to accurately identify the cancer driver modules by integrating the protein-protein interaction network, transcriptional regulatory network, gene expression and mutation data in cancer. We first develop a series of methods to learn the deep features of functional connectivity between genes in each omics data and then construct an integrated gene functional coherence network. Furthermore, we present a two-step module mining method to efficiently identify the cancer driver modules from the integrated gene functional coherence network. Systematic experiments in three cancer types demonstrate that the proposed framework can obtain more significant driver modules than most existing methods, and some identified driver modules are associated with clinical survival phenotypes.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109322"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the identification of cancer driver modules using deep features learned from multi-omics data\",\"authors\":\"Yang Guo, Lingling Liu, Aofeng Lin\",\"doi\":\"10.1016/j.compbiomed.2024.109322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying the cancer driver modules or pathways is crucial to understanding the fundamental mechanisms of cancer occurrence and progression. The rapid abundance of cancer omics data provides unprecedented opportunities to study the driver modules in cancer, and many computational methods have been developed in recent years. However, most existing methods have limitations in considering different types of cancer omics data and cannot effectively learn informative omics features for integrated identification of driver modules. In this paper, we introduce a new integrated framework to accurately identify the cancer driver modules by integrating the protein-protein interaction network, transcriptional regulatory network, gene expression and mutation data in cancer. We first develop a series of methods to learn the deep features of functional connectivity between genes in each omics data and then construct an integrated gene functional coherence network. Furthermore, we present a two-step module mining method to efficiently identify the cancer driver modules from the integrated gene functional coherence network. Systematic experiments in three cancer types demonstrate that the proposed framework can obtain more significant driver modules than most existing methods, and some identified driver modules are associated with clinical survival phenotypes.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109322\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014070\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014070","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Improving the identification of cancer driver modules using deep features learned from multi-omics data
Identifying the cancer driver modules or pathways is crucial to understanding the fundamental mechanisms of cancer occurrence and progression. The rapid abundance of cancer omics data provides unprecedented opportunities to study the driver modules in cancer, and many computational methods have been developed in recent years. However, most existing methods have limitations in considering different types of cancer omics data and cannot effectively learn informative omics features for integrated identification of driver modules. In this paper, we introduce a new integrated framework to accurately identify the cancer driver modules by integrating the protein-protein interaction network, transcriptional regulatory network, gene expression and mutation data in cancer. We first develop a series of methods to learn the deep features of functional connectivity between genes in each omics data and then construct an integrated gene functional coherence network. Furthermore, we present a two-step module mining method to efficiently identify the cancer driver modules from the integrated gene functional coherence network. Systematic experiments in three cancer types demonstrate that the proposed framework can obtain more significant driver modules than most existing methods, and some identified driver modules are associated with clinical survival phenotypes.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.