利用机器学习方法开发短式华-荣症状量表

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2024-10-30 DOI:10.3390/diagnostics14212419
Chan-Young Kwon, Boram Lee, Sung-Hee Kim, Seok Chan Jeong, Jong-Woo Kim
{"title":"利用机器学习方法开发短式华-荣症状量表","authors":"Chan-Young Kwon, Boram Lee, Sung-Hee Kim, Seok Chan Jeong, Jong-Woo Kim","doi":"10.3390/diagnostics14212419","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Hwa-byung (HB), also known as \"anger syndrome\" or \"fire illness\", is a culture-bound syndrome primarily observed among Koreans. This study aims to develop a short-form version of the HB symptom scale using machine learning approaches. Methods: Utilizing exploratory factor analysis (EFA) and various machine learning techniques (i.e., XGBoost, Logistic Regression, Random Forest, Support Vector Machine, Decision Tree, and Multi-Layer Perceptron), we sought to create an efficient HB assessment tool. A survey was conducted on 500 Korean adults using the original 15-item HB symptom scale. <b>Results</b>: The EFA revealed two distinct factors: psychological symptoms and somatic manifestations of HB. Statistical testing showed no significant differences between using different numbers of items per factor (ANOVA: F = 0.8593, <i>p</i> = 0.5051), supporting a minimalist approach with one item per factor. The resulting two-item short-form scale (Q3 and Q10) demonstrated high predictive power for the presence of HB. Multiple machine learning models achieved a consistent accuracy (90.00% for most models) with high discriminative ability (AUC = 0.9436-0.9579), with the Multi-Layer Perceptron showing the highest performance (AUC = 0.9579). The models showed balanced performance in identifying both HB and non-HB cases, with precision and recall values consistently around 0.90. <b>Conclusions</b>: The findings of this study highlighted the effectiveness of integrating EFA and artificial intelligence via machine learning in developing practical assessment tools. This study contributes to advancing methodological approaches for scale development and offers a model for creating efficient assessments of Korean medicine.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"14 21","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545513/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Short-Form Hwa-Byung Symptom Scale Using Machine Learning Approaches.\",\"authors\":\"Chan-Young Kwon, Boram Lee, Sung-Hee Kim, Seok Chan Jeong, Jong-Woo Kim\",\"doi\":\"10.3390/diagnostics14212419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Hwa-byung (HB), also known as \\\"anger syndrome\\\" or \\\"fire illness\\\", is a culture-bound syndrome primarily observed among Koreans. This study aims to develop a short-form version of the HB symptom scale using machine learning approaches. Methods: Utilizing exploratory factor analysis (EFA) and various machine learning techniques (i.e., XGBoost, Logistic Regression, Random Forest, Support Vector Machine, Decision Tree, and Multi-Layer Perceptron), we sought to create an efficient HB assessment tool. A survey was conducted on 500 Korean adults using the original 15-item HB symptom scale. <b>Results</b>: The EFA revealed two distinct factors: psychological symptoms and somatic manifestations of HB. Statistical testing showed no significant differences between using different numbers of items per factor (ANOVA: F = 0.8593, <i>p</i> = 0.5051), supporting a minimalist approach with one item per factor. The resulting two-item short-form scale (Q3 and Q10) demonstrated high predictive power for the presence of HB. Multiple machine learning models achieved a consistent accuracy (90.00% for most models) with high discriminative ability (AUC = 0.9436-0.9579), with the Multi-Layer Perceptron showing the highest performance (AUC = 0.9579). The models showed balanced performance in identifying both HB and non-HB cases, with precision and recall values consistently around 0.90. <b>Conclusions</b>: The findings of this study highlighted the effectiveness of integrating EFA and artificial intelligence via machine learning in developing practical assessment tools. This study contributes to advancing methodological approaches for scale development and offers a model for creating efficient assessments of Korean medicine.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545513/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics14212419\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics14212419","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:Hwa-byung (HB),又称 "愤怒综合征 "或 "火气病",是一种受文化影响的综合征,主要见于韩国人。本研究旨在利用机器学习方法开发一个简短版的 HB 症状量表。研究方法利用探索性因子分析(EFA)和各种机器学习技术(即 XGBoost、逻辑回归、随机森林、支持向量机、决策树和多层感知器),我们试图创建一种高效的 HB 评估工具。我们使用最初的 15 项 HB 症状量表对 500 名韩国成年人进行了调查。结果显示EFA显示了两个不同的因素:HB的心理症状和躯体表现。统计测试表明,每个因子使用不同数量的项目之间没有明显差异(方差分析:F = 0.8593,p = 0.5051),支持每个因子使用一个项目的最小化方法。由此产生的两项目短式量表(Q3 和 Q10)对 HB 的存在具有很高的预测能力。多个机器学习模型都达到了一致的准确率(大多数模型为 90.00%)和较高的判别能力(AUC = 0.9436-0.9579),其中多层感知器的性能最高(AUC = 0.9579)。这些模型在识别 HB 和非 HB 病例方面表现均衡,精确度和召回值始终保持在 0.90 左右。结论本研究的结果凸显了在开发实用评估工具时通过机器学习将 EFA 与人工智能相结合的有效性。这项研究有助于推动量表开发方法的发展,并为创建高效的韩国医学评估提供了一个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Short-Form Hwa-Byung Symptom Scale Using Machine Learning Approaches.

Background/Objectives: Hwa-byung (HB), also known as "anger syndrome" or "fire illness", is a culture-bound syndrome primarily observed among Koreans. This study aims to develop a short-form version of the HB symptom scale using machine learning approaches. Methods: Utilizing exploratory factor analysis (EFA) and various machine learning techniques (i.e., XGBoost, Logistic Regression, Random Forest, Support Vector Machine, Decision Tree, and Multi-Layer Perceptron), we sought to create an efficient HB assessment tool. A survey was conducted on 500 Korean adults using the original 15-item HB symptom scale. Results: The EFA revealed two distinct factors: psychological symptoms and somatic manifestations of HB. Statistical testing showed no significant differences between using different numbers of items per factor (ANOVA: F = 0.8593, p = 0.5051), supporting a minimalist approach with one item per factor. The resulting two-item short-form scale (Q3 and Q10) demonstrated high predictive power for the presence of HB. Multiple machine learning models achieved a consistent accuracy (90.00% for most models) with high discriminative ability (AUC = 0.9436-0.9579), with the Multi-Layer Perceptron showing the highest performance (AUC = 0.9579). The models showed balanced performance in identifying both HB and non-HB cases, with precision and recall values consistently around 0.90. Conclusions: The findings of this study highlighted the effectiveness of integrating EFA and artificial intelligence via machine learning in developing practical assessment tools. This study contributes to advancing methodological approaches for scale development and offers a model for creating efficient assessments of Korean medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
RETRACTED: Monda et al. Left Ventricular Non-Compaction in Children: Aetiology and Diagnostic Criteria. Diagnostics 2024, 14, 115. Compound Heterozygous Variants in the IFT140 Gene Associated with Skeletal Ciliopathies. A Novel Method for 3D Lung Tumor Reconstruction Using Generative Models. Agreement Between Resting Energy Expenditure Predictive Formulas and Indirect Calorimetry in Non-Dialysis Dependent Chronic Kidney Disease. Multi-Scale 3D Cephalometric Landmark Detection Based on Direct Regression with 3D CNN Architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1