用于评估椎体骨折的 mFFE CT-like MRI 序列。

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2024-10-30 DOI:10.3390/diagnostics14212434
David Ferreira Branco, Hicham Bouredoucen, Marion Hamard, Karel Gorican, Pierre-Alexandre Poletti, Bénédicte Marie Anne Delattre, Sana Boudabbous
{"title":"用于评估椎体骨折的 mFFE CT-like MRI 序列。","authors":"David Ferreira Branco, Hicham Bouredoucen, Marion Hamard, Karel Gorican, Pierre-Alexandre Poletti, Bénédicte Marie Anne Delattre, Sana Boudabbous","doi":"10.3390/diagnostics14212434","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to evaluate the diagnostic performance, image quality, and inter- and intra-observer agreement of the 3D T1 multi-echo fast field echo (mFFE) sequence in cervico-thoraco-lumbar vertebral fractures compared with conventional computed tomography (CT) as the gold standard.</p><p><strong>Methods: </strong>We conducted a prospective single-centre study including 29 patients who underwent spinal magnetic resonance imaging (MRI) at the surgeon's request, in addition to CT for vertebral fracture assessment and classification. A 3D T1 mFFE sequence was added to the standard MRI protocol. Consecutively, two readers analyzed the 3D mFFE sequence alone, the 3D mFFE sequence with the entire MRI protocol, including the STIR and T1 sequences, and, finally, the CT images in random order and 1 month apart. A standardized assessment was performed to determine the presence or absence of a fracture, its location, its classification according to the Genant and AO classifications for traumatic and osteoporotic fractures, respectively, the loss of height of the anterior and posterior walls of the vertebral body, and the presence of concomitant disco-ligamentous lesions. Contingency tables, intraclass correlation coefficients, and Cohen's kappa tests were used for statistical analysis.</p><p><strong>Results: </strong>A total of 25 fractures were recorded (48% cervical, 20% thoracic, and 32% lumbar), of which 52% were classified A, according to the AO classification system. The quality of the 3D mFFE image was good or excellent in 72% of cases. Inter-observer agreement was near perfect (0.81-1) for vertebral body height and for AO and Genant classifications for all modalities. Intra-observer agreement was strong-to-near perfect between CT and the 3D mFFE sequence. Regarding the diagnostic performance of the 3D mFFE sequence, the sensitivity was 0.9200 and 0.9600, the specificity was 0.9843 and 0.9895, and the accuracy was 0.9861 and 0.9769 for Readers 1 and 2, respectively. In addition, up to 40% of intervertebral disc lesions and 33% of ligamentous lesions were detected by the 3D mFFE sequence compared to CT, allowing four AO type A fractures to be reclassified as type B.</p><p><strong>Conclusions: </strong>The 3D mFFE sequence allows accurate diagnosis of vertebral fractures, with superiority over CT in detecting disco-ligamentous lesions and a more precise classification of fractures, which can prompt clinicians to adapt their management despite an image quality that still requires improvement in some cases.</p><p><strong>Key points: </strong>Vertebral fractures and disco-ligamentous lesions can be assessed using CT-like MRI sequences, with 3D T1 mFFE being superior to CT for the detection of disco-ligamentous lesions. CT-like images using the 3D T1 mFFE sequence improve the diagnostic accuracy of bone structures in MRI.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"14 21","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545412/pdf/","citationCount":"0","resultStr":"{\"title\":\"mFFE CT-like MRI Sequences for the Assessment of Vertebral Fractures.\",\"authors\":\"David Ferreira Branco, Hicham Bouredoucen, Marion Hamard, Karel Gorican, Pierre-Alexandre Poletti, Bénédicte Marie Anne Delattre, Sana Boudabbous\",\"doi\":\"10.3390/diagnostics14212434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The aim of this study was to evaluate the diagnostic performance, image quality, and inter- and intra-observer agreement of the 3D T1 multi-echo fast field echo (mFFE) sequence in cervico-thoraco-lumbar vertebral fractures compared with conventional computed tomography (CT) as the gold standard.</p><p><strong>Methods: </strong>We conducted a prospective single-centre study including 29 patients who underwent spinal magnetic resonance imaging (MRI) at the surgeon's request, in addition to CT for vertebral fracture assessment and classification. A 3D T1 mFFE sequence was added to the standard MRI protocol. Consecutively, two readers analyzed the 3D mFFE sequence alone, the 3D mFFE sequence with the entire MRI protocol, including the STIR and T1 sequences, and, finally, the CT images in random order and 1 month apart. A standardized assessment was performed to determine the presence or absence of a fracture, its location, its classification according to the Genant and AO classifications for traumatic and osteoporotic fractures, respectively, the loss of height of the anterior and posterior walls of the vertebral body, and the presence of concomitant disco-ligamentous lesions. Contingency tables, intraclass correlation coefficients, and Cohen's kappa tests were used for statistical analysis.</p><p><strong>Results: </strong>A total of 25 fractures were recorded (48% cervical, 20% thoracic, and 32% lumbar), of which 52% were classified A, according to the AO classification system. The quality of the 3D mFFE image was good or excellent in 72% of cases. Inter-observer agreement was near perfect (0.81-1) for vertebral body height and for AO and Genant classifications for all modalities. Intra-observer agreement was strong-to-near perfect between CT and the 3D mFFE sequence. Regarding the diagnostic performance of the 3D mFFE sequence, the sensitivity was 0.9200 and 0.9600, the specificity was 0.9843 and 0.9895, and the accuracy was 0.9861 and 0.9769 for Readers 1 and 2, respectively. In addition, up to 40% of intervertebral disc lesions and 33% of ligamentous lesions were detected by the 3D mFFE sequence compared to CT, allowing four AO type A fractures to be reclassified as type B.</p><p><strong>Conclusions: </strong>The 3D mFFE sequence allows accurate diagnosis of vertebral fractures, with superiority over CT in detecting disco-ligamentous lesions and a more precise classification of fractures, which can prompt clinicians to adapt their management despite an image quality that still requires improvement in some cases.</p><p><strong>Key points: </strong>Vertebral fractures and disco-ligamentous lesions can be assessed using CT-like MRI sequences, with 3D T1 mFFE being superior to CT for the detection of disco-ligamentous lesions. CT-like images using the 3D T1 mFFE sequence improve the diagnostic accuracy of bone structures in MRI.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics14212434\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics14212434","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在评估三维 T1 多回波快速场回波(mFFE)序列与作为金标准的传统计算机断层扫描(CT)相比,在颈椎-胸椎-腰椎骨折中的诊断性能、图像质量以及观察者之间和观察者内部的一致性:我们进行了一项前瞻性单中心研究,其中包括 29 名应外科医生要求接受脊柱磁共振成像(MRI)检查的患者,此外还包括 CT 用于椎体骨折评估和分类的患者。在标准磁共振成像方案中增加了三维 T1 mFFE 序列。两名阅读者连续分析了单独的三维 mFFE 序列、三维 mFFE 序列和整个 MRI 方案(包括 STIR 和 T1 序列),最后是随机顺序且相隔 1 个月的 CT 图像。对患者进行标准化评估,以确定是否存在骨折、骨折位置、根据 Genant 和 AO 分别对创伤性骨折和骨质疏松性骨折进行的分类、椎体前后壁高度的损失以及是否存在伴随的盘状韧带病变。统计分析采用了情况表、类内相关系数和科恩卡帕检验:共记录了 25 例骨折(颈椎骨折占 48%,胸椎骨折占 20%,腰椎骨折占 32%),根据 AO 分类系统,其中 52% 属于 A 类。72%的病例的三维 mFFE 图像质量为良好或优秀。在所有模式下,椎体高度以及 AO 和 Genant 分类的观察者间一致性接近完美(0.81-1)。CT 和三维 mFFE 序列的观察者内部一致性非常接近完美。关于三维 mFFE 序列的诊断性能,读者 1 和读者 2 的灵敏度分别为 0.9200 和 0.9600,特异性分别为 0.9843 和 0.9895,准确性分别为 0.9861 和 0.9769。此外,与 CT 相比,三维 mFFE 序列可检测出高达 40% 的椎间盘病变和 33% 的韧带病变,从而将四例 AO 型骨折重新归类为 B 型骨折:结论:三维 mFFE 序列能准确诊断椎体骨折,在检测椎间盘韧带病变方面优于 CT,并能对骨折进行更精确的分类,尽管某些病例的图像质量仍有待提高,但这能促使临床医生调整治疗方法:要点:椎体骨折和盘状韧带病变可通过类似 CT 的磁共振成像序列进行评估,其中三维 T1 mFFE 在检测盘状韧带病变方面优于 CT。使用三维 T1 mFFE 序列的类 CT 图像提高了磁共振成像对骨结构诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mFFE CT-like MRI Sequences for the Assessment of Vertebral Fractures.

Objectives: The aim of this study was to evaluate the diagnostic performance, image quality, and inter- and intra-observer agreement of the 3D T1 multi-echo fast field echo (mFFE) sequence in cervico-thoraco-lumbar vertebral fractures compared with conventional computed tomography (CT) as the gold standard.

Methods: We conducted a prospective single-centre study including 29 patients who underwent spinal magnetic resonance imaging (MRI) at the surgeon's request, in addition to CT for vertebral fracture assessment and classification. A 3D T1 mFFE sequence was added to the standard MRI protocol. Consecutively, two readers analyzed the 3D mFFE sequence alone, the 3D mFFE sequence with the entire MRI protocol, including the STIR and T1 sequences, and, finally, the CT images in random order and 1 month apart. A standardized assessment was performed to determine the presence or absence of a fracture, its location, its classification according to the Genant and AO classifications for traumatic and osteoporotic fractures, respectively, the loss of height of the anterior and posterior walls of the vertebral body, and the presence of concomitant disco-ligamentous lesions. Contingency tables, intraclass correlation coefficients, and Cohen's kappa tests were used for statistical analysis.

Results: A total of 25 fractures were recorded (48% cervical, 20% thoracic, and 32% lumbar), of which 52% were classified A, according to the AO classification system. The quality of the 3D mFFE image was good or excellent in 72% of cases. Inter-observer agreement was near perfect (0.81-1) for vertebral body height and for AO and Genant classifications for all modalities. Intra-observer agreement was strong-to-near perfect between CT and the 3D mFFE sequence. Regarding the diagnostic performance of the 3D mFFE sequence, the sensitivity was 0.9200 and 0.9600, the specificity was 0.9843 and 0.9895, and the accuracy was 0.9861 and 0.9769 for Readers 1 and 2, respectively. In addition, up to 40% of intervertebral disc lesions and 33% of ligamentous lesions were detected by the 3D mFFE sequence compared to CT, allowing four AO type A fractures to be reclassified as type B.

Conclusions: The 3D mFFE sequence allows accurate diagnosis of vertebral fractures, with superiority over CT in detecting disco-ligamentous lesions and a more precise classification of fractures, which can prompt clinicians to adapt their management despite an image quality that still requires improvement in some cases.

Key points: Vertebral fractures and disco-ligamentous lesions can be assessed using CT-like MRI sequences, with 3D T1 mFFE being superior to CT for the detection of disco-ligamentous lesions. CT-like images using the 3D T1 mFFE sequence improve the diagnostic accuracy of bone structures in MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
RETRACTED: Monda et al. Left Ventricular Non-Compaction in Children: Aetiology and Diagnostic Criteria. Diagnostics 2024, 14, 115. Compound Heterozygous Variants in the IFT140 Gene Associated with Skeletal Ciliopathies. A Novel Method for 3D Lung Tumor Reconstruction Using Generative Models. Agreement Between Resting Energy Expenditure Predictive Formulas and Indirect Calorimetry in Non-Dialysis Dependent Chronic Kidney Disease. Multi-Scale 3D Cephalometric Landmark Detection Based on Direct Regression with 3D CNN Architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1