治疗杜氏肌营养不良症的新型药物--磷二酰胺吗啉寡核苷酸的非临床药物代谢和药代动力学特性的表征

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Metabolism and Disposition Pub Date : 2024-11-15 DOI:10.1124/dmd.124.001819
Andrew K L Goey, Marie Claire Mukashyaka, Yogesh Patel, Louise R Rodino-Klapac, Lilly East
{"title":"治疗杜氏肌营养不良症的新型药物--磷二酰胺吗啉寡核苷酸的非临床药物代谢和药代动力学特性的表征","authors":"Andrew K L Goey, Marie Claire Mukashyaka, Yogesh Patel, Louise R Rodino-Klapac, Lilly East","doi":"10.1124/dmd.124.001819","DOIUrl":null,"url":null,"abstract":"<p><p>Eteplirsen, golodirsen, and casimersen are phosphorodiamidate morpholino oligomers (PMOs) that are approved in the United States for the treatment of patients with Duchenne muscular dystrophy (DMD) with mutations in the <i>DMD</i> gene that are amenable to exon 51, 53, and 45 skipping, respectively. Here we report a series of in vivo and in vitro studies characterizing the drug metabolism and pharmacokinetic (DMPK) properties of these three PMOs. Following a single intravenous dose, plasma exposure was consistent for all three PMOs in mouse, rat, and nonhuman primate (NHP), and plasma half-lives were similar for eteplirsen (2.0-4.1 h) and golodirsen (2.1-8.7 h) across species and more variable for casimersen (3.2-18.1 h). Plasma protein binding was low (<40%) for all three PMOs in mouse, rat, NHP, and human and was largely concentration independent. In the <i>mdx</i> mouse model of DMD, following a single intravenous injection, extensive biodistribution was observed in the target skeletal muscle tissues and the kidney for all three PMOs; consistent with the latter finding, the predominant route of elimination was renal. In vitro studies using liver microsomes showed no evidence of hepatic metabolism, and none of the PMOs were identified as inhibitors or inducers of the human cytochrome P450 enzymes or membrane drug transporters tested at clinically relevant concentrations. These findings suggest that key DMPK features are consistent for eteplirsen, golodirsen, and casimersen and provide evidence for the concept of a PMO drug class with potential application to novel exon-skipping drug candidates. SIGNIFICANCE STATEMENT: The PMOs eteplirsen, golodirsen, and casimersen share similar absorption, distribution, metabolism, and excretion and DMPK properties, which provides evidence for the concept of a PMO treatment class. A PMO drug class may support a platform approach to enhance understanding of the pharmacokinetic and pharmacodynamic behavior of these molecules. The grouping of novel agent series into platforms could be beneficial in the development of drug candidates for populations in which traditional clinical trials are not feasible.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1396-1406"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Nonclinical Drug Metabolism and Pharmacokinetic Properties of Phosphorodiamidate Morpholino Oligonucleotides, a Novel Drug Class for Duchenne Muscular Dystrophy.\",\"authors\":\"Andrew K L Goey, Marie Claire Mukashyaka, Yogesh Patel, Louise R Rodino-Klapac, Lilly East\",\"doi\":\"10.1124/dmd.124.001819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eteplirsen, golodirsen, and casimersen are phosphorodiamidate morpholino oligomers (PMOs) that are approved in the United States for the treatment of patients with Duchenne muscular dystrophy (DMD) with mutations in the <i>DMD</i> gene that are amenable to exon 51, 53, and 45 skipping, respectively. Here we report a series of in vivo and in vitro studies characterizing the drug metabolism and pharmacokinetic (DMPK) properties of these three PMOs. Following a single intravenous dose, plasma exposure was consistent for all three PMOs in mouse, rat, and nonhuman primate (NHP), and plasma half-lives were similar for eteplirsen (2.0-4.1 h) and golodirsen (2.1-8.7 h) across species and more variable for casimersen (3.2-18.1 h). Plasma protein binding was low (<40%) for all three PMOs in mouse, rat, NHP, and human and was largely concentration independent. In the <i>mdx</i> mouse model of DMD, following a single intravenous injection, extensive biodistribution was observed in the target skeletal muscle tissues and the kidney for all three PMOs; consistent with the latter finding, the predominant route of elimination was renal. In vitro studies using liver microsomes showed no evidence of hepatic metabolism, and none of the PMOs were identified as inhibitors or inducers of the human cytochrome P450 enzymes or membrane drug transporters tested at clinically relevant concentrations. These findings suggest that key DMPK features are consistent for eteplirsen, golodirsen, and casimersen and provide evidence for the concept of a PMO drug class with potential application to novel exon-skipping drug candidates. SIGNIFICANCE STATEMENT: The PMOs eteplirsen, golodirsen, and casimersen share similar absorption, distribution, metabolism, and excretion and DMPK properties, which provides evidence for the concept of a PMO treatment class. A PMO drug class may support a platform approach to enhance understanding of the pharmacokinetic and pharmacodynamic behavior of these molecules. The grouping of novel agent series into platforms could be beneficial in the development of drug candidates for populations in which traditional clinical trials are not feasible.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\" \",\"pages\":\"1396-1406\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.124.001819\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001819","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

Eteplirsen、golodirsen和casimersen是磷酸二酰胺吗啉寡聚体(PMOs),已在美国获批用于治疗DMD基因突变的杜氏肌营养不良症(DMD)患者,这些患者的DMD基因突变可分别被外显子51、53和45跳过。在此,我们报告了一系列体内和体外研究,描述了这三种 PMO 的药物代谢和药代动力学(DMPK)特性。在小鼠、大鼠和非人灵长类动物(NHP)体内单次静脉注射后,这三种PMO的血浆暴露量一致,不同物种的依替普酶(2.0-4.1小时)和戈罗迪森(2.1-8.7小时)的血浆半衰期相似,而卡西美森的半衰期变化较大(3.2-18.1小时)。血浆蛋白结合率低(mdx DMD 小鼠模型,单次静脉注射后,在目标骨骼肌组织和肾脏观察到所有三种 PMO 的广泛生物分布;与后一发现一致,主要的消除途径是肾脏。使用肝脏微粒体进行的体外研究没有发现肝脏代谢的迹象,在临床相关浓度的测试中,没有发现任何一种 PMO 是人类细胞色素 P450 酶或膜药物转运体的抑制剂或诱导剂。这些研究结果表明,依替普酶、戈洛替森和卡西美森的主要DMPK特征是一致的,并为PMO药物类别的概念提供了证据,该药物类别有可能应用于新型外显子切割候选药物。意义声明 PMOs eteplirsen、golodirsen 和 casimersen 具有相似的 ADME 和 DMPK 特性,这为 PMO 治疗类药物的概念提供了证据。PMO类药物可支持一种平台方法,以加深对这些分子的药代动力学和药效学行为的理解。将新型制剂系列归类为平台可能有利于为传统临床试验不可行的人群开发候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Nonclinical Drug Metabolism and Pharmacokinetic Properties of Phosphorodiamidate Morpholino Oligonucleotides, a Novel Drug Class for Duchenne Muscular Dystrophy.

Eteplirsen, golodirsen, and casimersen are phosphorodiamidate morpholino oligomers (PMOs) that are approved in the United States for the treatment of patients with Duchenne muscular dystrophy (DMD) with mutations in the DMD gene that are amenable to exon 51, 53, and 45 skipping, respectively. Here we report a series of in vivo and in vitro studies characterizing the drug metabolism and pharmacokinetic (DMPK) properties of these three PMOs. Following a single intravenous dose, plasma exposure was consistent for all three PMOs in mouse, rat, and nonhuman primate (NHP), and plasma half-lives were similar for eteplirsen (2.0-4.1 h) and golodirsen (2.1-8.7 h) across species and more variable for casimersen (3.2-18.1 h). Plasma protein binding was low (<40%) for all three PMOs in mouse, rat, NHP, and human and was largely concentration independent. In the mdx mouse model of DMD, following a single intravenous injection, extensive biodistribution was observed in the target skeletal muscle tissues and the kidney for all three PMOs; consistent with the latter finding, the predominant route of elimination was renal. In vitro studies using liver microsomes showed no evidence of hepatic metabolism, and none of the PMOs were identified as inhibitors or inducers of the human cytochrome P450 enzymes or membrane drug transporters tested at clinically relevant concentrations. These findings suggest that key DMPK features are consistent for eteplirsen, golodirsen, and casimersen and provide evidence for the concept of a PMO drug class with potential application to novel exon-skipping drug candidates. SIGNIFICANCE STATEMENT: The PMOs eteplirsen, golodirsen, and casimersen share similar absorption, distribution, metabolism, and excretion and DMPK properties, which provides evidence for the concept of a PMO treatment class. A PMO drug class may support a platform approach to enhance understanding of the pharmacokinetic and pharmacodynamic behavior of these molecules. The grouping of novel agent series into platforms could be beneficial in the development of drug candidates for populations in which traditional clinical trials are not feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
期刊最新文献
Absorption, Distribution, Metabolism, and Excretion of Icenticaftor (QBW251) in Healthy Male Volunteers at Steady State and In Vitro Phenotyping of Major Metabolites. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation. Quantitative Prediction of Drug-Drug Interactions Caused by CYP3A Induction Using Endogenous Biomarker 4β-Hydroxycholesterol. Utility of Common In Vitro Systems for Predicting Circulating Metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1