{"title":"利用血细胞及其膜衍生微囊的给药系统的进展。","authors":"Andong He, Yuye Huang, Chao Cao, Xuejin Li","doi":"10.1080/10717544.2024.2425156","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2425156"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles.\",\"authors\":\"Andong He, Yuye Huang, Chao Cao, Xuejin Li\",\"doi\":\"10.1080/10717544.2024.2425156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"31 1\",\"pages\":\"2425156\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2024.2425156\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2425156","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles.
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.