Mads Reinholdt Jensen, Sune Agersnap, Eva Egelyng Sigsgaard, Marcelo de Paula Ávila, Henrik Glenner, Mary S. Wisz, Philip Francis Thomsen
{"title":"问题的核心--底栖海洋监测中鉴定方法和生物复制的重要性。","authors":"Mads Reinholdt Jensen, Sune Agersnap, Eva Egelyng Sigsgaard, Marcelo de Paula Ávila, Henrik Glenner, Mary S. Wisz, Philip Francis Thomsen","doi":"10.1002/ece3.70556","DOIUrl":null,"url":null,"abstract":"<p>Benthic macrofauna are important and widely used biological indicators of marine ecosystems as they have limited mobility and therefore integrate the effects of local environmental stressors over time. Recently, environmental DNA (eDNA) analysis has provided a potentially more resource-efficient approach for benthic biomonitoring than traditional morphology-based methods. Several studies have compared eDNA with morphology-based monitoring, but few have compared the two approaches using the exact same sediment cores. In addition, the meiofauna and pelagic organisms obtained as ‘bycatch’ using eDNA have largely been disregarded from comparisons. Here, we address these shortcomings through comparative invertebrate analyses of six sediment sample replicates from each of four stations in Denmark, using eDNA metabarcoding and morphological identification. Our results revealed large variation between the six replicates for both methods and little overlap in taxon compositions between methods. While the morphological dataset was dominated by molluscs and annelids, the eDNA dataset was dominated by arthropods and annelids. Using community composition data, we found that sampling stations could be distinguished both with eDNA and morphology. Finally, we inferred expected total richness from extrapolated accumulation curves of detected taxa from each method. This indicated that eDNA metabarcoding requires less replication than morphology for maximum coverage of diversity to be reached. However, both methods required high levels of replication, and our results on taxonomic composition add to the evidence that morphological and eDNA-based methods should preferably be used as complimentary tools for marine bioassessment.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563695/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Core of the Matter—Importance of Identification Method and Biological Replication for Benthic Marine Monitoring\",\"authors\":\"Mads Reinholdt Jensen, Sune Agersnap, Eva Egelyng Sigsgaard, Marcelo de Paula Ávila, Henrik Glenner, Mary S. Wisz, Philip Francis Thomsen\",\"doi\":\"10.1002/ece3.70556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Benthic macrofauna are important and widely used biological indicators of marine ecosystems as they have limited mobility and therefore integrate the effects of local environmental stressors over time. Recently, environmental DNA (eDNA) analysis has provided a potentially more resource-efficient approach for benthic biomonitoring than traditional morphology-based methods. Several studies have compared eDNA with morphology-based monitoring, but few have compared the two approaches using the exact same sediment cores. In addition, the meiofauna and pelagic organisms obtained as ‘bycatch’ using eDNA have largely been disregarded from comparisons. Here, we address these shortcomings through comparative invertebrate analyses of six sediment sample replicates from each of four stations in Denmark, using eDNA metabarcoding and morphological identification. Our results revealed large variation between the six replicates for both methods and little overlap in taxon compositions between methods. While the morphological dataset was dominated by molluscs and annelids, the eDNA dataset was dominated by arthropods and annelids. Using community composition data, we found that sampling stations could be distinguished both with eDNA and morphology. Finally, we inferred expected total richness from extrapolated accumulation curves of detected taxa from each method. This indicated that eDNA metabarcoding requires less replication than morphology for maximum coverage of diversity to be reached. However, both methods required high levels of replication, and our results on taxonomic composition add to the evidence that morphological and eDNA-based methods should preferably be used as complimentary tools for marine bioassessment.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70556\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70556","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
The Core of the Matter—Importance of Identification Method and Biological Replication for Benthic Marine Monitoring
Benthic macrofauna are important and widely used biological indicators of marine ecosystems as they have limited mobility and therefore integrate the effects of local environmental stressors over time. Recently, environmental DNA (eDNA) analysis has provided a potentially more resource-efficient approach for benthic biomonitoring than traditional morphology-based methods. Several studies have compared eDNA with morphology-based monitoring, but few have compared the two approaches using the exact same sediment cores. In addition, the meiofauna and pelagic organisms obtained as ‘bycatch’ using eDNA have largely been disregarded from comparisons. Here, we address these shortcomings through comparative invertebrate analyses of six sediment sample replicates from each of four stations in Denmark, using eDNA metabarcoding and morphological identification. Our results revealed large variation between the six replicates for both methods and little overlap in taxon compositions between methods. While the morphological dataset was dominated by molluscs and annelids, the eDNA dataset was dominated by arthropods and annelids. Using community composition data, we found that sampling stations could be distinguished both with eDNA and morphology. Finally, we inferred expected total richness from extrapolated accumulation curves of detected taxa from each method. This indicated that eDNA metabarcoding requires less replication than morphology for maximum coverage of diversity to be reached. However, both methods required high levels of replication, and our results on taxonomic composition add to the evidence that morphological and eDNA-based methods should preferably be used as complimentary tools for marine bioassessment.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.