尖峰蛋白胞质尾部的替代物增强了 SARS-CoV-2 的感染性和免疫原性。

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EBioMedicine Pub Date : 2024-11-11 DOI:10.1016/j.ebiom.2024.105437
Yuhan Li, Xianwen Zhang, Wanbo Tai, Xinyu Zhuang, Huicheng Shi, Shumin Liao, Xinyang Yu, Rui Mei, Xingzhao Chen, Yanhong Huang, Yubin Liu, Jianying Liu, Yang Liu, Yibin Zhu, Penghua Wang, Mingyao Tian, Guocan Yu, Liang Li, Gong Cheng
{"title":"尖峰蛋白胞质尾部的替代物增强了 SARS-CoV-2 的感染性和免疫原性。","authors":"Yuhan Li, Xianwen Zhang, Wanbo Tai, Xinyu Zhuang, Huicheng Shi, Shumin Liao, Xinyang Yu, Rui Mei, Xingzhao Chen, Yanhong Huang, Yubin Liu, Jianying Liu, Yang Liu, Yibin Zhu, Penghua Wang, Mingyao Tian, Guocan Yu, Liang Li, Gong Cheng","doi":"10.1016/j.ebiom.2024.105437","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Global dissemination of SARS-CoV-2 Omicron sublineages has provided a sufficient opportunity for natural selection, thus enabling beneficial mutations to emerge. Characterisation of these mutations uncovers the underlying machinery responsible for the fast transmission of Omicron variants and guides vaccine development for combating the COVID-19 pandemic.</p><p><strong>Methods: </strong>Through systematic bioinformatics analysis of 496,606 sequences of Omicron variants, we obtained 40 amino acid substitutions that occurred with high frequency in the S protein. Utilising pseudoviruses and a trans-complementation system of SARS-CoV-2, we identified the effect of high-frequency mutations on viral infectivity and elucidated the molecular mechanisms. Finally, we evaluated the impact of a key emerging mutation on the immune protection induced by the SARS-CoV-2 VLP mRNA vaccine in a murine model.</p><p><strong>Findings: </strong>We identified a proline-to-leucine substitution at the 1263rd residue of the Spike protein, and upon investigating the relative frequencies across multiple Omicron sublineages, we found a trend of increasing frequency for P1263L. The substitution significantly enhances the capacity for S-mediated viral entry and improves the immunogenicity of a virus-like particle mRNA vaccine. Mechanistic studies showed that this mutation is located in the FERM binding motif of the cytoplasmic tail and impairs the interaction between the S protein and the Ezrin/Radixin/Moesin proteins. Additionally, this mutation facilitates the incorporation of S proteins into SARS-CoV-2 virions.</p><p><strong>Interpretation: </strong>This study offers mechanistic insight into the constantly increasing transmissibility of SARS-CoV-2 Omicron variants and provides a meaningful optimisation strategy for vaccine development against SARS-CoV-2.</p><p><strong>Funding: </strong>This study was supported by grants from the National Key Research and Development Plan of China (2021YFC2302405, 2022YFC2303200, 2021YFC2300200 and 2022YFC2303400), the National Natural Science Foundation of China (32188101, 32200772, 82422049, 82241082, 32270182, 82372254, 82271872, 82341046, 32100755 and 82102389), Shenzhen Medical Research Fund (B2404002, A2303036), the Shenzhen Bay Laboratory Startup Fund (21330111), Shenzhen San-Ming Project for Prevention and Research on Vector-borne Diseases (SZSM202211023), Yunnan Provincial Science and Technology Project at Southwest United Graduate School (202302AO370010). The New Cornerstone Science Foundation through the New Cornerstone Investigator Program, and the Xplorer Prize from Tencent Foundation.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"110 ","pages":"105437"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A substitution at the cytoplasmic tail of the spike protein enhances SARS-CoV-2 infectivity and immunogenicity.\",\"authors\":\"Yuhan Li, Xianwen Zhang, Wanbo Tai, Xinyu Zhuang, Huicheng Shi, Shumin Liao, Xinyang Yu, Rui Mei, Xingzhao Chen, Yanhong Huang, Yubin Liu, Jianying Liu, Yang Liu, Yibin Zhu, Penghua Wang, Mingyao Tian, Guocan Yu, Liang Li, Gong Cheng\",\"doi\":\"10.1016/j.ebiom.2024.105437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Global dissemination of SARS-CoV-2 Omicron sublineages has provided a sufficient opportunity for natural selection, thus enabling beneficial mutations to emerge. Characterisation of these mutations uncovers the underlying machinery responsible for the fast transmission of Omicron variants and guides vaccine development for combating the COVID-19 pandemic.</p><p><strong>Methods: </strong>Through systematic bioinformatics analysis of 496,606 sequences of Omicron variants, we obtained 40 amino acid substitutions that occurred with high frequency in the S protein. Utilising pseudoviruses and a trans-complementation system of SARS-CoV-2, we identified the effect of high-frequency mutations on viral infectivity and elucidated the molecular mechanisms. Finally, we evaluated the impact of a key emerging mutation on the immune protection induced by the SARS-CoV-2 VLP mRNA vaccine in a murine model.</p><p><strong>Findings: </strong>We identified a proline-to-leucine substitution at the 1263rd residue of the Spike protein, and upon investigating the relative frequencies across multiple Omicron sublineages, we found a trend of increasing frequency for P1263L. The substitution significantly enhances the capacity for S-mediated viral entry and improves the immunogenicity of a virus-like particle mRNA vaccine. Mechanistic studies showed that this mutation is located in the FERM binding motif of the cytoplasmic tail and impairs the interaction between the S protein and the Ezrin/Radixin/Moesin proteins. Additionally, this mutation facilitates the incorporation of S proteins into SARS-CoV-2 virions.</p><p><strong>Interpretation: </strong>This study offers mechanistic insight into the constantly increasing transmissibility of SARS-CoV-2 Omicron variants and provides a meaningful optimisation strategy for vaccine development against SARS-CoV-2.</p><p><strong>Funding: </strong>This study was supported by grants from the National Key Research and Development Plan of China (2021YFC2302405, 2022YFC2303200, 2021YFC2300200 and 2022YFC2303400), the National Natural Science Foundation of China (32188101, 32200772, 82422049, 82241082, 32270182, 82372254, 82271872, 82341046, 32100755 and 82102389), Shenzhen Medical Research Fund (B2404002, A2303036), the Shenzhen Bay Laboratory Startup Fund (21330111), Shenzhen San-Ming Project for Prevention and Research on Vector-borne Diseases (SZSM202211023), Yunnan Provincial Science and Technology Project at Southwest United Graduate School (202302AO370010). The New Cornerstone Science Foundation through the New Cornerstone Investigator Program, and the Xplorer Prize from Tencent Foundation.</p>\",\"PeriodicalId\":11494,\"journal\":{\"name\":\"EBioMedicine\",\"volume\":\"110 \",\"pages\":\"105437\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EBioMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ebiom.2024.105437\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105437","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:SARS-CoV-2 Omicron亚系的全球传播为自然选择提供了充分的机会,从而使有益变异得以出现。对这些变异的特征描述揭示了导致 Omicron 变异快速传播的基本机制,并为开发疫苗以抗击 COVID-19 大流行提供指导:方法:通过对496,606个奥米克隆变体序列进行系统的生物信息学分析,我们获得了S蛋白中出现频率较高的40个氨基酸置换。利用假病毒和 SARS-CoV-2 的反式互补系统,我们确定了高频突变对病毒传染性的影响,并阐明了其分子机制。最后,我们在小鼠模型中评估了一个新出现的关键突变对 SARS-CoV-2 VLP mRNA 疫苗诱导的免疫保护的影响:我们在 Spike 蛋白的第 1263 个残基上发现了脯氨酸到亮氨酸的置换,在调查多个 Omicron 亚系的相对频率后,我们发现 P1263L 的频率呈上升趋势。这种取代大大增强了 S 介导的病毒进入能力,并提高了类病毒颗粒 mRNA 疫苗的免疫原性。机理研究表明,该突变位于胞质尾部的 FERM 结合基序,会损害 S 蛋白与 Ezrin/Radixin/Moesin 蛋白之间的相互作用。此外,该突变还有利于 S 蛋白结合到 SARS-CoV-2 病毒中:这项研究从机理上揭示了 SARS-CoV-2 Omicron 变体不断增加的传播性,并为开发 SARS-CoV-2 疫苗提供了有意义的优化策略:本研究得到国家重点研发计划(2021YFC2302405、2022YFC2303200、2021YFC2300200和2022YFC2303400)、国家自然科学基金(32188101、32200772、82422049、82241082、32270182、82372254、82271872、82341046、32100755和82102389)的资助、深圳市医学科研基金(B2404002、A2303036)、深圳湾实验室启动基金(21330111)、深圳市三明病媒生物预防与研究项目(SZSM202211023)、西南联合研究生院云南省科技项目(202302AO370010)。通过 "新基石研究者计划 "获得新基石科学基金,并获得腾讯基金会 "探索者奖"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A substitution at the cytoplasmic tail of the spike protein enhances SARS-CoV-2 infectivity and immunogenicity.

Background: Global dissemination of SARS-CoV-2 Omicron sublineages has provided a sufficient opportunity for natural selection, thus enabling beneficial mutations to emerge. Characterisation of these mutations uncovers the underlying machinery responsible for the fast transmission of Omicron variants and guides vaccine development for combating the COVID-19 pandemic.

Methods: Through systematic bioinformatics analysis of 496,606 sequences of Omicron variants, we obtained 40 amino acid substitutions that occurred with high frequency in the S protein. Utilising pseudoviruses and a trans-complementation system of SARS-CoV-2, we identified the effect of high-frequency mutations on viral infectivity and elucidated the molecular mechanisms. Finally, we evaluated the impact of a key emerging mutation on the immune protection induced by the SARS-CoV-2 VLP mRNA vaccine in a murine model.

Findings: We identified a proline-to-leucine substitution at the 1263rd residue of the Spike protein, and upon investigating the relative frequencies across multiple Omicron sublineages, we found a trend of increasing frequency for P1263L. The substitution significantly enhances the capacity for S-mediated viral entry and improves the immunogenicity of a virus-like particle mRNA vaccine. Mechanistic studies showed that this mutation is located in the FERM binding motif of the cytoplasmic tail and impairs the interaction between the S protein and the Ezrin/Radixin/Moesin proteins. Additionally, this mutation facilitates the incorporation of S proteins into SARS-CoV-2 virions.

Interpretation: This study offers mechanistic insight into the constantly increasing transmissibility of SARS-CoV-2 Omicron variants and provides a meaningful optimisation strategy for vaccine development against SARS-CoV-2.

Funding: This study was supported by grants from the National Key Research and Development Plan of China (2021YFC2302405, 2022YFC2303200, 2021YFC2300200 and 2022YFC2303400), the National Natural Science Foundation of China (32188101, 32200772, 82422049, 82241082, 32270182, 82372254, 82271872, 82341046, 32100755 and 82102389), Shenzhen Medical Research Fund (B2404002, A2303036), the Shenzhen Bay Laboratory Startup Fund (21330111), Shenzhen San-Ming Project for Prevention and Research on Vector-borne Diseases (SZSM202211023), Yunnan Provincial Science and Technology Project at Southwest United Graduate School (202302AO370010). The New Cornerstone Science Foundation through the New Cornerstone Investigator Program, and the Xplorer Prize from Tencent Foundation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
期刊最新文献
B7H6 is the predominant activating ligand driving natural killer cell-mediated killing in patients with liquid tumours: evidence from clinical, in silico, in vitro, and in vivo studies. Continuous characterisation of exacerbation pathophysiology using wearable technologies in free-living outpatients with COPD: a prospective observational cohort study. Advancing respiratory virus diagnostics: integrating the nasal IFN-I score for improved viral detection. Association of short-term exposure to ambient air pollution and temperature with bronchiectasis mortality: a nationwide time-stratified case-crossover study. Development and evaluation of an antigen targeting lateral flow test for Crimean-Congo Haemorrhagic Fever.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1