{"title":"通过 PEG 化优化治疗蛋白的药理和免疫学特性:研究关键参数及其影响。","authors":"João Gonçalves, Paolo Caliceti","doi":"10.2147/DDDT.S481420","DOIUrl":null,"url":null,"abstract":"<p><p>Protein PEGylation represents a significant technological advancement in the development of protein-based therapeutics and is widely used to reduce immunogenicity, enhance pharmacokinetics, and/or improve stability. The improved pharmacokinetic profile of PEGylated proteins compared with the native protein results in sustained versus fluctuating plasma concentrations and carries the potential of less frequent administration. However, attachment of PEG to therapeutic proteins can alter their structural conformation, which exposes new epitopes to the immune system. The design of PEGylated proteins thus needs to balance the intended benefits with the potential risks associated with the immunogenicity of the PEG moiety itself or resulting from alterations in the conformation of the therapeutic protein. In recent years, advancements in protein PEGylation chemistry have offered the capability to target PEG attachment to specific amino acids to create more stable and bioactive therapies. The biophysical and biopharmaceutical features of PEGylated proteins can vary based on polymer size, shape, density, and conjugation site, and the immunogenicity of the conjugate can be further impacted by the properties of the therapeutic protein itself and the characteristics of the patient. It is important to note that not all patients will develop an immune response toward the PEG moiety, and not all immune responses are clinically meaningful. A comprehensive understanding of the factors that influence immunogenic responses to PEGylated proteins is important to optimize their therapeutic benefits. This article reviews the design and optimization of PEGylation strategies to enhance the clinical performance of protein-based therapeutics while minimizing immunogenic responses to the PEG moiety or PEGylated proteins.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"5041-5062"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Pharmacological and Immunological Properties of Therapeutic Proteins Through PEGylation: Investigating Key Parameters and Their Impact.\",\"authors\":\"João Gonçalves, Paolo Caliceti\",\"doi\":\"10.2147/DDDT.S481420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein PEGylation represents a significant technological advancement in the development of protein-based therapeutics and is widely used to reduce immunogenicity, enhance pharmacokinetics, and/or improve stability. The improved pharmacokinetic profile of PEGylated proteins compared with the native protein results in sustained versus fluctuating plasma concentrations and carries the potential of less frequent administration. However, attachment of PEG to therapeutic proteins can alter their structural conformation, which exposes new epitopes to the immune system. The design of PEGylated proteins thus needs to balance the intended benefits with the potential risks associated with the immunogenicity of the PEG moiety itself or resulting from alterations in the conformation of the therapeutic protein. In recent years, advancements in protein PEGylation chemistry have offered the capability to target PEG attachment to specific amino acids to create more stable and bioactive therapies. The biophysical and biopharmaceutical features of PEGylated proteins can vary based on polymer size, shape, density, and conjugation site, and the immunogenicity of the conjugate can be further impacted by the properties of the therapeutic protein itself and the characteristics of the patient. It is important to note that not all patients will develop an immune response toward the PEG moiety, and not all immune responses are clinically meaningful. A comprehensive understanding of the factors that influence immunogenic responses to PEGylated proteins is important to optimize their therapeutic benefits. This article reviews the design and optimization of PEGylation strategies to enhance the clinical performance of protein-based therapeutics while minimizing immunogenic responses to the PEG moiety or PEGylated proteins.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"18 \",\"pages\":\"5041-5062\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S481420\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S481420","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Optimizing Pharmacological and Immunological Properties of Therapeutic Proteins Through PEGylation: Investigating Key Parameters and Their Impact.
Protein PEGylation represents a significant technological advancement in the development of protein-based therapeutics and is widely used to reduce immunogenicity, enhance pharmacokinetics, and/or improve stability. The improved pharmacokinetic profile of PEGylated proteins compared with the native protein results in sustained versus fluctuating plasma concentrations and carries the potential of less frequent administration. However, attachment of PEG to therapeutic proteins can alter their structural conformation, which exposes new epitopes to the immune system. The design of PEGylated proteins thus needs to balance the intended benefits with the potential risks associated with the immunogenicity of the PEG moiety itself or resulting from alterations in the conformation of the therapeutic protein. In recent years, advancements in protein PEGylation chemistry have offered the capability to target PEG attachment to specific amino acids to create more stable and bioactive therapies. The biophysical and biopharmaceutical features of PEGylated proteins can vary based on polymer size, shape, density, and conjugation site, and the immunogenicity of the conjugate can be further impacted by the properties of the therapeutic protein itself and the characteristics of the patient. It is important to note that not all patients will develop an immune response toward the PEG moiety, and not all immune responses are clinically meaningful. A comprehensive understanding of the factors that influence immunogenic responses to PEGylated proteins is important to optimize their therapeutic benefits. This article reviews the design and optimization of PEGylation strategies to enhance the clinical performance of protein-based therapeutics while minimizing immunogenic responses to the PEG moiety or PEGylated proteins.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.