{"title":"通过固定 Comamonas sp. ZF-3 补充微生物群落,改善焦化废水处理并提高生物多样性。","authors":"Ke Yuan, Yanbiao Ma, Qiuyu Li","doi":"10.1093/femsle/fnae095","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to investigate the relationship among pollutant removal performance, microbial community structure and potential gene function of immobilized microorganisms in coking wastewater (CWW) treatment process. The results showed that the immobilized biomass containing strain Comamonas sp. ZF-3 displayed greater resistance to CWW and higher COD, NH4+-N removal efficiency (92%, 60%) than free cells (48%, 7%), meanwhile, the results from GC-MS proved main organic pollutants in CWW including phenolic compounds, heterocyclic compounds and polycyclic aromatic hydrocarbons were basically removed by immobilized microorganisms. During 123 days of degradation experiment, high-throughput 16S rRNA gene sequencing analysis of immobilized carriers showed more stable and diverse microbial community, which was consistent with simultaneous removal of COD and NH4+-N observed in carrier experiment. Among them, Comamonas sp. ZF-3 continuously remained at the highest proportion (23.25%) in immobilized carrier, while Nitrosomonas (1.47%) and Nitrospira (1.90%) were simultaneously detected. Moreover, microbial community of immobilized carriers showed higher relative abundance of potential function in membrane transport and xenobiotics biodegradation and metabolism, which may indirectly displayed biodegradation activity of immobilized functional microorganisms. This work illustrated the survival status and potential gene function of immobilized microorganisms, and provided basis for practical application of immobilized carriers in CWW treatment.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved treatment of coking wastewater and higher biodiversity through immobilization of Comamonas sp. ZF-3 supplemented microbial community.\",\"authors\":\"Ke Yuan, Yanbiao Ma, Qiuyu Li\",\"doi\":\"10.1093/femsle/fnae095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to investigate the relationship among pollutant removal performance, microbial community structure and potential gene function of immobilized microorganisms in coking wastewater (CWW) treatment process. The results showed that the immobilized biomass containing strain Comamonas sp. ZF-3 displayed greater resistance to CWW and higher COD, NH4+-N removal efficiency (92%, 60%) than free cells (48%, 7%), meanwhile, the results from GC-MS proved main organic pollutants in CWW including phenolic compounds, heterocyclic compounds and polycyclic aromatic hydrocarbons were basically removed by immobilized microorganisms. During 123 days of degradation experiment, high-throughput 16S rRNA gene sequencing analysis of immobilized carriers showed more stable and diverse microbial community, which was consistent with simultaneous removal of COD and NH4+-N observed in carrier experiment. Among them, Comamonas sp. ZF-3 continuously remained at the highest proportion (23.25%) in immobilized carrier, while Nitrosomonas (1.47%) and Nitrospira (1.90%) were simultaneously detected. Moreover, microbial community of immobilized carriers showed higher relative abundance of potential function in membrane transport and xenobiotics biodegradation and metabolism, which may indirectly displayed biodegradation activity of immobilized functional microorganisms. This work illustrated the survival status and potential gene function of immobilized microorganisms, and provided basis for practical application of immobilized carriers in CWW treatment.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae095\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae095","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Improved treatment of coking wastewater and higher biodiversity through immobilization of Comamonas sp. ZF-3 supplemented microbial community.
The aim of this study was to investigate the relationship among pollutant removal performance, microbial community structure and potential gene function of immobilized microorganisms in coking wastewater (CWW) treatment process. The results showed that the immobilized biomass containing strain Comamonas sp. ZF-3 displayed greater resistance to CWW and higher COD, NH4+-N removal efficiency (92%, 60%) than free cells (48%, 7%), meanwhile, the results from GC-MS proved main organic pollutants in CWW including phenolic compounds, heterocyclic compounds and polycyclic aromatic hydrocarbons were basically removed by immobilized microorganisms. During 123 days of degradation experiment, high-throughput 16S rRNA gene sequencing analysis of immobilized carriers showed more stable and diverse microbial community, which was consistent with simultaneous removal of COD and NH4+-N observed in carrier experiment. Among them, Comamonas sp. ZF-3 continuously remained at the highest proportion (23.25%) in immobilized carrier, while Nitrosomonas (1.47%) and Nitrospira (1.90%) were simultaneously detected. Moreover, microbial community of immobilized carriers showed higher relative abundance of potential function in membrane transport and xenobiotics biodegradation and metabolism, which may indirectly displayed biodegradation activity of immobilized functional microorganisms. This work illustrated the survival status and potential gene function of immobilized microorganisms, and provided basis for practical application of immobilized carriers in CWW treatment.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.