{"title":"间充质干细胞源性细胞外囊泡药物递送的研究热点和趋势:2013-2023年文献计量和可视化分析。","authors":"Tianyuan Zhao, Yuhao Mu, Haobin Deng, Kaini Liang, Fanfan Zhou, Qiyuan Lin, Fuyang Cao, Feifei Zhou, Zhen Yang","doi":"10.3389/fcell.2024.1412363","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Our study aims to provide a comprehensive overview of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in drug delivery research, focusing on the period between 2013 and 2023. Given the increasing global interest in this field, we utilized bibliometric tools to explore publication trends, key contributors, and thematic research clusters.</p><p><strong>Methods: </strong>Data was collected from the Web of Science (WoS) database, and an in-depth bibliometric analysis was conducted using VOSviewer. The analysis encompassed bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, offering a structured insight into global research activity. We also employed Citespace to further analyze thematic clusters in this domain.</p><p><strong>Results: </strong>Our analysis revealed a total of 1,045 publications related to MSC-EVs in drug delivery over the past decade, showing a steady increase in research output. China led in publication count, H-index, prolific authors, and research funding, while the United States ranked highest in total citations, average citation counts, and H-index performance. Pharmaceutics emerged as the leading journal by publication volume, with the Journal of Controlled Release having the strongest total link strength. Top institutions driving research included Shanghai Jiao Tong University, Zhejiang University, and Harvard University. VOSviewer analysis identified four major research clusters: tissue engineering, cancer, neurological diseases, and targeted delivery. Citespace analysis refined this further into ten thematic areas, including differentiation, tissue regeneration, and drug resistance.</p><p><strong>Discussion: </strong>This bibliometric assessment provides a holistic visualization of the research landscape for MSC-EVs in drug delivery, underlining the significant contributions of China and the United States. Our findings underscore the increasing global importance of MSC-EV research and highlight emerging themes that will likely guide future research directions. The insights from this study offer a foundational framework for identifying nascent frontiers in MSC-EV-based drug delivery.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1412363"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research hotspots and trends of mesenchymal stem cell-derived extracellular vesicles for drug delivery: a bibliometric and visualization analysis from 2013 to 2023.\",\"authors\":\"Tianyuan Zhao, Yuhao Mu, Haobin Deng, Kaini Liang, Fanfan Zhou, Qiyuan Lin, Fuyang Cao, Feifei Zhou, Zhen Yang\",\"doi\":\"10.3389/fcell.2024.1412363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Our study aims to provide a comprehensive overview of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in drug delivery research, focusing on the period between 2013 and 2023. Given the increasing global interest in this field, we utilized bibliometric tools to explore publication trends, key contributors, and thematic research clusters.</p><p><strong>Methods: </strong>Data was collected from the Web of Science (WoS) database, and an in-depth bibliometric analysis was conducted using VOSviewer. The analysis encompassed bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, offering a structured insight into global research activity. We also employed Citespace to further analyze thematic clusters in this domain.</p><p><strong>Results: </strong>Our analysis revealed a total of 1,045 publications related to MSC-EVs in drug delivery over the past decade, showing a steady increase in research output. China led in publication count, H-index, prolific authors, and research funding, while the United States ranked highest in total citations, average citation counts, and H-index performance. Pharmaceutics emerged as the leading journal by publication volume, with the Journal of Controlled Release having the strongest total link strength. Top institutions driving research included Shanghai Jiao Tong University, Zhejiang University, and Harvard University. VOSviewer analysis identified four major research clusters: tissue engineering, cancer, neurological diseases, and targeted delivery. Citespace analysis refined this further into ten thematic areas, including differentiation, tissue regeneration, and drug resistance.</p><p><strong>Discussion: </strong>This bibliometric assessment provides a holistic visualization of the research landscape for MSC-EVs in drug delivery, underlining the significant contributions of China and the United States. Our findings underscore the increasing global importance of MSC-EV research and highlight emerging themes that will likely guide future research directions. The insights from this study offer a foundational framework for identifying nascent frontiers in MSC-EV-based drug delivery.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":\"12 \",\"pages\":\"1412363\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2024.1412363\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1412363","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Research hotspots and trends of mesenchymal stem cell-derived extracellular vesicles for drug delivery: a bibliometric and visualization analysis from 2013 to 2023.
Introduction: Our study aims to provide a comprehensive overview of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in drug delivery research, focusing on the period between 2013 and 2023. Given the increasing global interest in this field, we utilized bibliometric tools to explore publication trends, key contributors, and thematic research clusters.
Methods: Data was collected from the Web of Science (WoS) database, and an in-depth bibliometric analysis was conducted using VOSviewer. The analysis encompassed bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, offering a structured insight into global research activity. We also employed Citespace to further analyze thematic clusters in this domain.
Results: Our analysis revealed a total of 1,045 publications related to MSC-EVs in drug delivery over the past decade, showing a steady increase in research output. China led in publication count, H-index, prolific authors, and research funding, while the United States ranked highest in total citations, average citation counts, and H-index performance. Pharmaceutics emerged as the leading journal by publication volume, with the Journal of Controlled Release having the strongest total link strength. Top institutions driving research included Shanghai Jiao Tong University, Zhejiang University, and Harvard University. VOSviewer analysis identified four major research clusters: tissue engineering, cancer, neurological diseases, and targeted delivery. Citespace analysis refined this further into ten thematic areas, including differentiation, tissue regeneration, and drug resistance.
Discussion: This bibliometric assessment provides a holistic visualization of the research landscape for MSC-EVs in drug delivery, underlining the significant contributions of China and the United States. Our findings underscore the increasing global importance of MSC-EV research and highlight emerging themes that will likely guide future research directions. The insights from this study offer a foundational framework for identifying nascent frontiers in MSC-EV-based drug delivery.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.