基于机器学习的 HIV-1 蛋白酶生物活性预测:电子密度分析的启示。

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL Future medicinal chemistry Pub Date : 2024-11-12 DOI:10.1080/17568919.2024.2419350
Vladislav Naumovich, Shivananda Kandagalla, Maria Grishina
{"title":"基于机器学习的 HIV-1 蛋白酶生物活性预测:电子密度分析的启示。","authors":"Vladislav Naumovich, Shivananda Kandagalla, Maria Grishina","doi":"10.1080/17568919.2024.2419350","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition.<b>Materials & methods:</b> Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data.<b>Results & conclusion:</b> Among all the models tested, logistic regression achieved the highest accuracy of 0.76 on the test set. The model's ability to differentiate between less active and highly active classes was relatively good, as indicated by an AUC-ROC score of 0.77. The analysis identified several critical factors affecting the biological activity of HIV-1 protease inhibitors, including the electron density contribution of hydrogen atoms, bond-critical points and particular amino acid residues. These findings provide new insights into how these molecular factors influence HIV-1 protease inhibition, emphasizing the importance of hydrogen bonding, glycine's flexibility and hydrophobic interactions in ligand binding.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based prediction of bioactivity in HIV-1 protease: insights from electron density analysis.\",\"authors\":\"Vladislav Naumovich, Shivananda Kandagalla, Maria Grishina\",\"doi\":\"10.1080/17568919.2024.2419350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition.<b>Materials & methods:</b> Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data.<b>Results & conclusion:</b> Among all the models tested, logistic regression achieved the highest accuracy of 0.76 on the test set. The model's ability to differentiate between less active and highly active classes was relatively good, as indicated by an AUC-ROC score of 0.77. The analysis identified several critical factors affecting the biological activity of HIV-1 protease inhibitors, including the electron density contribution of hydrogen atoms, bond-critical points and particular amino acid residues. These findings provide new insights into how these molecular factors influence HIV-1 protease inhibition, emphasizing the importance of hydrogen bonding, glycine's flexibility and hydrophobic interactions in ligand binding.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2419350\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2419350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:开发一种模型,用于预测针对 HIV-1 蛋白酶的化合物的生物活性,并确定影响酶抑制作用的因素:结合理查德-贝德尔(Richard Bader)的 "分子中的原子"(Atoms in Molecules)理论和电子密度拓扑分析,利用实验性 X 射线 "蛋白质-配体 "复合物和抑制常数数据,建立机器学习模型:在所有测试模型中,逻辑回归模型在测试集上的准确率最高,达到 0.76。该模型区分低活性和高活性类别的能力相对较好,AUC-ROC 得分为 0.77。分析确定了影响 HIV-1 蛋白酶抑制剂生物活性的几个关键因素,包括氢原子的电子密度贡献、键临界点和特定氨基酸残基。这些发现为了解这些分子因素如何影响 HIV-1 蛋白酶抑制作用提供了新的视角,强调了氢键、甘氨酸的灵活性和疏水相互作用在配体结合中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-based prediction of bioactivity in HIV-1 protease: insights from electron density analysis.

Aim: To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition.Materials & methods: Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data.Results & conclusion: Among all the models tested, logistic regression achieved the highest accuracy of 0.76 on the test set. The model's ability to differentiate between less active and highly active classes was relatively good, as indicated by an AUC-ROC score of 0.77. The analysis identified several critical factors affecting the biological activity of HIV-1 protease inhibitors, including the electron density contribution of hydrogen atoms, bond-critical points and particular amino acid residues. These findings provide new insights into how these molecular factors influence HIV-1 protease inhibition, emphasizing the importance of hydrogen bonding, glycine's flexibility and hydrophobic interactions in ligand binding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
期刊最新文献
Unveiling the potential of HS-1793: a review of its anticancer properties and therapeutic promise. Design and synthesis of new nicotinamides as immunomodulatory VEGFR-2 inhibitors and apoptosis inducers. Cu(II) complexes based on benzimidazole ligands: synthesis, characterization, DFT, molecular docking & bioactivity study. Machine learning-based prediction of bioactivity in HIV-1 protease: insights from electron density analysis. New immunomodulatory anticancer quinazolinone-based thalidomide analogs: design, synthesis and biological evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1