一种与综合免疫缺陷和心肌病相关的新型 FNIP1 基因突变。

IF 2.9 4区 医学 Q2 GENETICS & HEREDITY Immunogenetics Pub Date : 2024-11-14 DOI:10.1007/s00251-024-01359-3
Ilia Spivak, Atar Lev, Amos J Simon, Ortal Barel, Ido Somekh, Raz Somech
{"title":"一种与综合免疫缺陷和心肌病相关的新型 FNIP1 基因突变。","authors":"Ilia Spivak, Atar Lev, Amos J Simon, Ortal Barel, Ido Somekh, Raz Somech","doi":"10.1007/s00251-024-01359-3","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic variants in Folliculin interacting protein 1 (FNIP1) were recently discovered as monogenic causes for immunodeficiency and cardiomyopathy, with only a few patients diagnosed thus far. In this study, we describe a patient harboring a novel genetic variant in FNIP1 causing immunodeficiency with cardiac involvement. Clinical and immunological workups were performed. Genetic evaluation utilizing whole-exome sequencing (WES) and Sanger sequencing was conducted. The index patient (subject II-4) presented with hypertrophic cardiomyopathy, recurrent infections, and chronic diarrhea during infancy. Immune workup revealed agammaglobulinemia and a lack of B lymphocytes. Genetic evaluation identified a homozygous 13-bp duplication variant in FNIP1 (c.52_64dupGCGCCCGGCCGCG, p. Asp22GlyfsTer21) resulting in a frameshift in exon 1/18. She was treated with supplemental intravenous immunoglobulins (IVIg) with good control of sinopulmonary and gastrointestinal manifestations. Her sibling (subject II-1) had similar clinical features, along with dysmorphic facial features and hypotony, and succumbed to cardiogenic shock at the age of 2 months, prior to genetic evaluation. Diagnosis of novel immunodeficiencies promotes our understanding of the immune system, enabling genetic counseling as herein, and may assist in the development of novel medical therapies in the future. FNIP1 loss-of-function should be considered in patients presenting in infancy with cardiac manifestations along with agammaglobulinemia (and B-cell lymphopenia).</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"77 1","pages":"2"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561061/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel mutation in FNIP1 associated with a syndromic immunodeficiency and cardiomyopathy.\",\"authors\":\"Ilia Spivak, Atar Lev, Amos J Simon, Ortal Barel, Ido Somekh, Raz Somech\",\"doi\":\"10.1007/s00251-024-01359-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic variants in Folliculin interacting protein 1 (FNIP1) were recently discovered as monogenic causes for immunodeficiency and cardiomyopathy, with only a few patients diagnosed thus far. In this study, we describe a patient harboring a novel genetic variant in FNIP1 causing immunodeficiency with cardiac involvement. Clinical and immunological workups were performed. Genetic evaluation utilizing whole-exome sequencing (WES) and Sanger sequencing was conducted. The index patient (subject II-4) presented with hypertrophic cardiomyopathy, recurrent infections, and chronic diarrhea during infancy. Immune workup revealed agammaglobulinemia and a lack of B lymphocytes. Genetic evaluation identified a homozygous 13-bp duplication variant in FNIP1 (c.52_64dupGCGCCCGGCCGCG, p. Asp22GlyfsTer21) resulting in a frameshift in exon 1/18. She was treated with supplemental intravenous immunoglobulins (IVIg) with good control of sinopulmonary and gastrointestinal manifestations. Her sibling (subject II-1) had similar clinical features, along with dysmorphic facial features and hypotony, and succumbed to cardiogenic shock at the age of 2 months, prior to genetic evaluation. Diagnosis of novel immunodeficiencies promotes our understanding of the immune system, enabling genetic counseling as herein, and may assist in the development of novel medical therapies in the future. FNIP1 loss-of-function should be considered in patients presenting in infancy with cardiac manifestations along with agammaglobulinemia (and B-cell lymphopenia).</p>\",\"PeriodicalId\":13446,\"journal\":{\"name\":\"Immunogenetics\",\"volume\":\"77 1\",\"pages\":\"2\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561061/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00251-024-01359-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-024-01359-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

卵泡素互作蛋白 1(FNIP1)的基因变异最近被发现是导致免疫缺陷和心肌病的单基因病因,但迄今只有少数患者被确诊。在本研究中,我们描述了一名携带新型 FNIP1 基因变异的患者,该变异可导致免疫缺陷并累及心脏。我们对该患者进行了临床和免疫学检查。利用全外显子组测序(WES)和桑格测序进行了基因评估。患者(受试者 II-4)在婴儿期出现肥厚型心肌病、反复感染和慢性腹泻。免疫检查结果显示患者患有丙种球蛋白血症并缺乏 B 淋巴细胞。基因评估发现,FNIP1 存在一个 13-bp 的同源重复变异(c.52_64dupGCGCCCGGCCGCG,p. Asp22GlyfsTer21),导致第 1/18 号外显子发生框移位。她接受了静脉补充免疫球蛋白(IVIg)治疗,鼻窦肺和胃肠道症状得到了很好的控制。她的同胞(受试者 II-1)也有类似的临床特征,同时伴有面部畸形和低血压,在接受遗传学评估之前,于 2 个月大时死于心源性休克。新型免疫缺陷的诊断促进了我们对免疫系统的了解,使遗传咨询成为可能,并有助于未来新型医学疗法的开发。在婴儿期出现心脏表现并伴有阿加球蛋白血症(和 B 细胞淋巴细胞减少症)的患者应考虑 FNIP1 功能缺失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel mutation in FNIP1 associated with a syndromic immunodeficiency and cardiomyopathy.

Genetic variants in Folliculin interacting protein 1 (FNIP1) were recently discovered as monogenic causes for immunodeficiency and cardiomyopathy, with only a few patients diagnosed thus far. In this study, we describe a patient harboring a novel genetic variant in FNIP1 causing immunodeficiency with cardiac involvement. Clinical and immunological workups were performed. Genetic evaluation utilizing whole-exome sequencing (WES) and Sanger sequencing was conducted. The index patient (subject II-4) presented with hypertrophic cardiomyopathy, recurrent infections, and chronic diarrhea during infancy. Immune workup revealed agammaglobulinemia and a lack of B lymphocytes. Genetic evaluation identified a homozygous 13-bp duplication variant in FNIP1 (c.52_64dupGCGCCCGGCCGCG, p. Asp22GlyfsTer21) resulting in a frameshift in exon 1/18. She was treated with supplemental intravenous immunoglobulins (IVIg) with good control of sinopulmonary and gastrointestinal manifestations. Her sibling (subject II-1) had similar clinical features, along with dysmorphic facial features and hypotony, and succumbed to cardiogenic shock at the age of 2 months, prior to genetic evaluation. Diagnosis of novel immunodeficiencies promotes our understanding of the immune system, enabling genetic counseling as herein, and may assist in the development of novel medical therapies in the future. FNIP1 loss-of-function should be considered in patients presenting in infancy with cardiac manifestations along with agammaglobulinemia (and B-cell lymphopenia).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunogenetics
Immunogenetics 医学-免疫学
CiteScore
6.20
自引率
6.20%
发文量
48
审稿时长
1 months
期刊介绍: Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.
期刊最新文献
The sufficiency of genetic diagnosis in managing patients with inborn errors of immunity during prenatal care and childbearing. Bioinformatic analysis predicts the regulatory function of noncoding SNPs associated with Long COVID-19 syndrome. Decoding the genetic landscape of juvenile dermatomyositis: insights from phosphorylation-associated single nucleotide polymorphisms. The characteristic of HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 alleles in Zhejiang Han population. The effect of circulating cytokines on the risk of systemic lupus erythematosus: Mendelian randomization and observational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1