Zhanchi Zhang , Junchuan Liu , Yijun Li , Yunsheng Wang , Xiao Zheng , Feng Wang , Tong Tong , Dechao Miao , Wenshuai Li , Lei Chen , Linfeng Wang
{"title":"多酚的微生物代谢产物 4-羟基苯乙酸可通过抑制 ROS 的产生来抑制破骨细胞的生成。","authors":"Zhanchi Zhang , Junchuan Liu , Yijun Li , Yunsheng Wang , Xiao Zheng , Feng Wang , Tong Tong , Dechao Miao , Wenshuai Li , Lei Chen , Linfeng Wang","doi":"10.1016/j.intimp.2024.113571","DOIUrl":null,"url":null,"abstract":"<div><div>Intracellular reactive oxygen species (ROS) accumulation is key to osteoclast differentiation. Plant-derived polyphenols that have reduced ROS production have been widely studied for the treatment of osteoporosis. However, these compounds are rarely absorbed in the small intestine and are instead converted to phenolic acids by the microbiota in the colon. These large quantities of low-molecular-weight phenolic acids can then be absorbed by the body. 4-Hydroxyphenylacetic acid (4-HPA) is an important metabolite of these polyphenols that is generated by the human intestinal microbiota. However, its potential mechanism is not fully understood.</div><div>In this study, we aimed to elucidate the role of 4-HPA on osteoclastogenesis and treating osteoporosis. Our study showed that 4-HPA inhibited osteoclast differentiation and function and downregulated osteoclast-specific genes, including <em>NFATc1</em>, <em>Atp6v0d2</em>, <em>MMP9</em>, <em>CTSK</em>, <em>Acp5</em>, and <em>c-Fos</em>. As for further mechanism exploration, 4-HPA reduced ROS accumulation by regulating nuclear factor erythroid 2-related factor (Nrf2) and subsequently inhibited the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. To evaluate the effect of 4-HPA on postmenopausal osteoporosis, an ovariectomized (OVX) mouse model was used. The Micro-CT and histomorphometry analyses showed that 4-HPA effectively prevents bone loss. Encouragingly, 4-HPA demonstrated efficacy in treating osteoporosis induced by OVX.</div><div>In conclusion, our study revealed that 4-HPA, a polyphenol metabolite produced by intestinal microorganisms, also inhibits osteoclast formation and treats osteoporosis, which provides a new experimental basis and candidate drug for the treatment of osteoporosis.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"143 ","pages":"Article 113571"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Hydroxyphenylacetic Acid, a microbial-derived metabolite of Polyphenols, inhibits osteoclastogenesis by inhibiting ROS production\",\"authors\":\"Zhanchi Zhang , Junchuan Liu , Yijun Li , Yunsheng Wang , Xiao Zheng , Feng Wang , Tong Tong , Dechao Miao , Wenshuai Li , Lei Chen , Linfeng Wang\",\"doi\":\"10.1016/j.intimp.2024.113571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intracellular reactive oxygen species (ROS) accumulation is key to osteoclast differentiation. Plant-derived polyphenols that have reduced ROS production have been widely studied for the treatment of osteoporosis. However, these compounds are rarely absorbed in the small intestine and are instead converted to phenolic acids by the microbiota in the colon. These large quantities of low-molecular-weight phenolic acids can then be absorbed by the body. 4-Hydroxyphenylacetic acid (4-HPA) is an important metabolite of these polyphenols that is generated by the human intestinal microbiota. However, its potential mechanism is not fully understood.</div><div>In this study, we aimed to elucidate the role of 4-HPA on osteoclastogenesis and treating osteoporosis. Our study showed that 4-HPA inhibited osteoclast differentiation and function and downregulated osteoclast-specific genes, including <em>NFATc1</em>, <em>Atp6v0d2</em>, <em>MMP9</em>, <em>CTSK</em>, <em>Acp5</em>, and <em>c-Fos</em>. As for further mechanism exploration, 4-HPA reduced ROS accumulation by regulating nuclear factor erythroid 2-related factor (Nrf2) and subsequently inhibited the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. To evaluate the effect of 4-HPA on postmenopausal osteoporosis, an ovariectomized (OVX) mouse model was used. The Micro-CT and histomorphometry analyses showed that 4-HPA effectively prevents bone loss. Encouragingly, 4-HPA demonstrated efficacy in treating osteoporosis induced by OVX.</div><div>In conclusion, our study revealed that 4-HPA, a polyphenol metabolite produced by intestinal microorganisms, also inhibits osteoclast formation and treats osteoporosis, which provides a new experimental basis and candidate drug for the treatment of osteoporosis.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"143 \",\"pages\":\"Article 113571\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924020939\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924020939","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
4-Hydroxyphenylacetic Acid, a microbial-derived metabolite of Polyphenols, inhibits osteoclastogenesis by inhibiting ROS production
Intracellular reactive oxygen species (ROS) accumulation is key to osteoclast differentiation. Plant-derived polyphenols that have reduced ROS production have been widely studied for the treatment of osteoporosis. However, these compounds are rarely absorbed in the small intestine and are instead converted to phenolic acids by the microbiota in the colon. These large quantities of low-molecular-weight phenolic acids can then be absorbed by the body. 4-Hydroxyphenylacetic acid (4-HPA) is an important metabolite of these polyphenols that is generated by the human intestinal microbiota. However, its potential mechanism is not fully understood.
In this study, we aimed to elucidate the role of 4-HPA on osteoclastogenesis and treating osteoporosis. Our study showed that 4-HPA inhibited osteoclast differentiation and function and downregulated osteoclast-specific genes, including NFATc1, Atp6v0d2, MMP9, CTSK, Acp5, and c-Fos. As for further mechanism exploration, 4-HPA reduced ROS accumulation by regulating nuclear factor erythroid 2-related factor (Nrf2) and subsequently inhibited the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. To evaluate the effect of 4-HPA on postmenopausal osteoporosis, an ovariectomized (OVX) mouse model was used. The Micro-CT and histomorphometry analyses showed that 4-HPA effectively prevents bone loss. Encouragingly, 4-HPA demonstrated efficacy in treating osteoporosis induced by OVX.
In conclusion, our study revealed that 4-HPA, a polyphenol metabolite produced by intestinal microorganisms, also inhibits osteoclast formation and treats osteoporosis, which provides a new experimental basis and candidate drug for the treatment of osteoporosis.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.