{"title":"用于增强感染性伤口愈合的可控一氧化氮释放纳米颗粒:包裹在 GelMA 水凝胶中的 PDA@BNN6 研究。","authors":"Jing Yang, Donghui Jia, Jialu Qiao, Ximing Peng, Chuchao Zhou, Yanqing Yang","doi":"10.2147/IJN.S486640","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected.</p><p><strong>Methods: </strong>Gel/PDA@BNN6 was developed, and both in vitro and in vivo experiments were carried out to evaluate its structure, physicochemical properties, antibacterial effects, effectiveness in promoting infected wound healing, and biocompatibility.</p><p><strong>Results: </strong>Gel/PDA@BNN6 was successfully synthesized, exhibiting a porous three-dimensional lattice structure and excellent mechanical properties. It demonstrated highly efficient photothermal conversion, controllable nitric oxide delivery, strong bactericidal effects, and minimal cytotoxicity in vitro. In vivo, Gel/PDA@BNN6, when used with NIR therapy, showed significant anti-inflammatory effects, promoted collagen deposition, and stimulated vascular neoangiogenesis, which accelerated wound closure. Additionally, it displayed superior biocompatibility.</p><p><strong>Discussion: </strong>Gel/PDA@BNN6 has shown an explicit curative effect for infected wound healing, suggesting it has a good chance of being an antimicrobial dressing in the future.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11499-11516"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556330/pdf/","citationCount":"0","resultStr":"{\"title\":\"Controlled Nitric Oxide-Releasing Nanovehicles for Enhanced Infected Wound Healing: A Study on PDA@BNN6 Encapsulated in GelMA Hydrogel.\",\"authors\":\"Jing Yang, Donghui Jia, Jialu Qiao, Ximing Peng, Chuchao Zhou, Yanqing Yang\",\"doi\":\"10.2147/IJN.S486640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected.</p><p><strong>Methods: </strong>Gel/PDA@BNN6 was developed, and both in vitro and in vivo experiments were carried out to evaluate its structure, physicochemical properties, antibacterial effects, effectiveness in promoting infected wound healing, and biocompatibility.</p><p><strong>Results: </strong>Gel/PDA@BNN6 was successfully synthesized, exhibiting a porous three-dimensional lattice structure and excellent mechanical properties. It demonstrated highly efficient photothermal conversion, controllable nitric oxide delivery, strong bactericidal effects, and minimal cytotoxicity in vitro. In vivo, Gel/PDA@BNN6, when used with NIR therapy, showed significant anti-inflammatory effects, promoted collagen deposition, and stimulated vascular neoangiogenesis, which accelerated wound closure. Additionally, it displayed superior biocompatibility.</p><p><strong>Discussion: </strong>Gel/PDA@BNN6 has shown an explicit curative effect for infected wound healing, suggesting it has a good chance of being an antimicrobial dressing in the future.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"19 \",\"pages\":\"11499-11516\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556330/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S486640\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S486640","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Controlled Nitric Oxide-Releasing Nanovehicles for Enhanced Infected Wound Healing: A Study on PDA@BNN6 Encapsulated in GelMA Hydrogel.
Introduction: The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected.
Methods: Gel/PDA@BNN6 was developed, and both in vitro and in vivo experiments were carried out to evaluate its structure, physicochemical properties, antibacterial effects, effectiveness in promoting infected wound healing, and biocompatibility.
Results: Gel/PDA@BNN6 was successfully synthesized, exhibiting a porous three-dimensional lattice structure and excellent mechanical properties. It demonstrated highly efficient photothermal conversion, controllable nitric oxide delivery, strong bactericidal effects, and minimal cytotoxicity in vitro. In vivo, Gel/PDA@BNN6, when used with NIR therapy, showed significant anti-inflammatory effects, promoted collagen deposition, and stimulated vascular neoangiogenesis, which accelerated wound closure. Additionally, it displayed superior biocompatibility.
Discussion: Gel/PDA@BNN6 has shown an explicit curative effect for infected wound healing, suggesting it has a good chance of being an antimicrobial dressing in the future.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.