Sunil S Adav, Alicia Rosabee Yu Ling Wu, Kee Woei Ng
{"title":"洞察头发中与 pH 值诱导变化和蛋白质脱氨基有关的结构和蛋白质组变化。","authors":"Sunil S Adav, Alicia Rosabee Yu Ling Wu, Kee Woei Ng","doi":"10.1111/ics.13029","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The hair shaft is often exposed to shampoo and haircare products that have unknown or varying pH levels. These products contain a combination of surfactants and other active ingredients to treat the hair or the scalp. As amphoteric proteins, hair keratins have limited buffering capacity, so variations in pH can have multifaceted impacts on them. However, there is limited knowledge about how pH affects keratins and keratin-associated proteins (KAPs). Therefore, this study aims to examine the effects of varying pH levels (pH 3-pH 12) on hair structure and analyse consequent alterations in the hair proteome using mass spectrometry-based proteomics.</p><p><strong>Methods: </strong>A scanning electron microscope was used to examine changes in hair-shaft morphology due to exposure to various pH levels, while mass spectrometry was employed to analyse protein alterations.</p><p><strong>Results: </strong>We found that exposing the hair shaft to varying pH levels led to specific effects on the cuticle, including cuticle lifting at certain pH levels, while proteomics analysis identified alterations in the hair proteome along with significant deamidation of keratins types I and II and KAPs. More pronounced effects were observed at extreme acidic conditions (pH 3) and alkaline conditions (above pH 8) on both hair morphology and hair proteins. pH levels between pH 5 and pH 7 had minimal impact on hair structure and proteins, suggesting that haircare products with pH in this range are ideal for hair-shaft health. In contrast, alkaline pH levels were found to negatively affect hair.</p><p><strong>Conclusions: </strong>The structure evaluation and proteomics data emphasize the critical role of pH in hair health. The extreme acidic or alkaline pH impacts the hair structure and hair proteins. The study highlights the optimal pH range for maintaining healthy hair.</p>","PeriodicalId":13936,"journal":{"name":"International Journal of Cosmetic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into structural and proteomic alterations related to pH-induced changes and protein deamidation in hair.\",\"authors\":\"Sunil S Adav, Alicia Rosabee Yu Ling Wu, Kee Woei Ng\",\"doi\":\"10.1111/ics.13029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The hair shaft is often exposed to shampoo and haircare products that have unknown or varying pH levels. These products contain a combination of surfactants and other active ingredients to treat the hair or the scalp. As amphoteric proteins, hair keratins have limited buffering capacity, so variations in pH can have multifaceted impacts on them. However, there is limited knowledge about how pH affects keratins and keratin-associated proteins (KAPs). Therefore, this study aims to examine the effects of varying pH levels (pH 3-pH 12) on hair structure and analyse consequent alterations in the hair proteome using mass spectrometry-based proteomics.</p><p><strong>Methods: </strong>A scanning electron microscope was used to examine changes in hair-shaft morphology due to exposure to various pH levels, while mass spectrometry was employed to analyse protein alterations.</p><p><strong>Results: </strong>We found that exposing the hair shaft to varying pH levels led to specific effects on the cuticle, including cuticle lifting at certain pH levels, while proteomics analysis identified alterations in the hair proteome along with significant deamidation of keratins types I and II and KAPs. More pronounced effects were observed at extreme acidic conditions (pH 3) and alkaline conditions (above pH 8) on both hair morphology and hair proteins. pH levels between pH 5 and pH 7 had minimal impact on hair structure and proteins, suggesting that haircare products with pH in this range are ideal for hair-shaft health. In contrast, alkaline pH levels were found to negatively affect hair.</p><p><strong>Conclusions: </strong>The structure evaluation and proteomics data emphasize the critical role of pH in hair health. The extreme acidic or alkaline pH impacts the hair structure and hair proteins. The study highlights the optimal pH range for maintaining healthy hair.</p>\",\"PeriodicalId\":13936,\"journal\":{\"name\":\"International Journal of Cosmetic Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cosmetic Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ics.13029\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cosmetic Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ics.13029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Insights into structural and proteomic alterations related to pH-induced changes and protein deamidation in hair.
Objectives: The hair shaft is often exposed to shampoo and haircare products that have unknown or varying pH levels. These products contain a combination of surfactants and other active ingredients to treat the hair or the scalp. As amphoteric proteins, hair keratins have limited buffering capacity, so variations in pH can have multifaceted impacts on them. However, there is limited knowledge about how pH affects keratins and keratin-associated proteins (KAPs). Therefore, this study aims to examine the effects of varying pH levels (pH 3-pH 12) on hair structure and analyse consequent alterations in the hair proteome using mass spectrometry-based proteomics.
Methods: A scanning electron microscope was used to examine changes in hair-shaft morphology due to exposure to various pH levels, while mass spectrometry was employed to analyse protein alterations.
Results: We found that exposing the hair shaft to varying pH levels led to specific effects on the cuticle, including cuticle lifting at certain pH levels, while proteomics analysis identified alterations in the hair proteome along with significant deamidation of keratins types I and II and KAPs. More pronounced effects were observed at extreme acidic conditions (pH 3) and alkaline conditions (above pH 8) on both hair morphology and hair proteins. pH levels between pH 5 and pH 7 had minimal impact on hair structure and proteins, suggesting that haircare products with pH in this range are ideal for hair-shaft health. In contrast, alkaline pH levels were found to negatively affect hair.
Conclusions: The structure evaluation and proteomics data emphasize the critical role of pH in hair health. The extreme acidic or alkaline pH impacts the hair structure and hair proteins. The study highlights the optimal pH range for maintaining healthy hair.
期刊介绍:
The Journal publishes original refereed papers, review papers and correspondence in the fields of cosmetic research. It is read by practising cosmetic scientists and dermatologists, as well as specialists in more diverse disciplines that are developing new products which contact the skin, hair, nails or mucous membranes.
The aim of the Journal is to present current scientific research, both pure and applied, in: cosmetics, toiletries, perfumery and allied fields. Areas that are of particular interest include: studies in skin physiology and interactions with cosmetic ingredients, innovation in claim substantiation methods (in silico, in vitro, ex vivo, in vivo), human and in vitro safety testing of cosmetic ingredients and products, physical chemistry and technology of emulsion and dispersed systems, theory and application of surfactants, new developments in olfactive research, aerosol technology and selected aspects of analytical chemistry.