大型语言模型对医学环境的影响。

IF 1.8 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL Internal Medicine Journal Pub Date : 2024-11-14 DOI:10.1111/imj.16549
Oliver Kleinig, Shreyans Sinhal, Rushan Khurram, Christina Gao, Luke Spajic, Andrew Zannettino, Margaret Schnitzler, Christina Guo, Sarah Zaman, Harry Smallbone, Mana Ittimani, Weng Onn Chan, Brandon Stretton, Harry Godber, Justin Chan, Richard C Turner, Leigh R Warren, Jonathan Clarke, Gopal Sivagangabalan, Matthew Marshall-Webb, Genevieve Moseley, Simon Driscoll, Pramesh Kovoor, Clara K Chow, Yuchen Luo, Aravinda Thiagalingam, Ammar Zaka, Paul Gould, Fabio Ramponi, Aashray Gupta, Joshua G Kovoor, Stephen Bacchi
{"title":"大型语言模型对医学环境的影响。","authors":"Oliver Kleinig, Shreyans Sinhal, Rushan Khurram, Christina Gao, Luke Spajic, Andrew Zannettino, Margaret Schnitzler, Christina Guo, Sarah Zaman, Harry Smallbone, Mana Ittimani, Weng Onn Chan, Brandon Stretton, Harry Godber, Justin Chan, Richard C Turner, Leigh R Warren, Jonathan Clarke, Gopal Sivagangabalan, Matthew Marshall-Webb, Genevieve Moseley, Simon Driscoll, Pramesh Kovoor, Clara K Chow, Yuchen Luo, Aravinda Thiagalingam, Ammar Zaka, Paul Gould, Fabio Ramponi, Aashray Gupta, Joshua G Kovoor, Stephen Bacchi","doi":"10.1111/imj.16549","DOIUrl":null,"url":null,"abstract":"<p><p>The environmental impact of large language models (LLMs) in medicine spans carbon emission, water consumption and rare mineral usage. Prior-generation LLMs, such as GPT-3, already have concerning environmental impacts. Next-generation LLMs, such as GPT-4, are more energy intensive and used frequently, posing potentially significant environmental harms. We propose a five-step pathway for clinical researchers to minimise the environmental impact of the natural language algorithms they create.</p>","PeriodicalId":13625,"journal":{"name":"Internal Medicine Journal","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental impact of large language models in medicine.\",\"authors\":\"Oliver Kleinig, Shreyans Sinhal, Rushan Khurram, Christina Gao, Luke Spajic, Andrew Zannettino, Margaret Schnitzler, Christina Guo, Sarah Zaman, Harry Smallbone, Mana Ittimani, Weng Onn Chan, Brandon Stretton, Harry Godber, Justin Chan, Richard C Turner, Leigh R Warren, Jonathan Clarke, Gopal Sivagangabalan, Matthew Marshall-Webb, Genevieve Moseley, Simon Driscoll, Pramesh Kovoor, Clara K Chow, Yuchen Luo, Aravinda Thiagalingam, Ammar Zaka, Paul Gould, Fabio Ramponi, Aashray Gupta, Joshua G Kovoor, Stephen Bacchi\",\"doi\":\"10.1111/imj.16549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The environmental impact of large language models (LLMs) in medicine spans carbon emission, water consumption and rare mineral usage. Prior-generation LLMs, such as GPT-3, already have concerning environmental impacts. Next-generation LLMs, such as GPT-4, are more energy intensive and used frequently, posing potentially significant environmental harms. We propose a five-step pathway for clinical researchers to minimise the environmental impact of the natural language algorithms they create.</p>\",\"PeriodicalId\":13625,\"journal\":{\"name\":\"Internal Medicine Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internal Medicine Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/imj.16549\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internal Medicine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imj.16549","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

医学中的大型语言模型(LLM)对环境的影响涉及碳排放、水消耗和稀有矿物质的使用。上一代 LLM(如 GPT-3)已经对环境造成了影响。下一代 LLM(如 GPT-4)能耗更高,使用更频繁,可能会对环境造成严重危害。我们为临床研究人员提出了一个五步路径,以最大限度地减少他们所创建的自然语言算法对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental impact of large language models in medicine.

The environmental impact of large language models (LLMs) in medicine spans carbon emission, water consumption and rare mineral usage. Prior-generation LLMs, such as GPT-3, already have concerning environmental impacts. Next-generation LLMs, such as GPT-4, are more energy intensive and used frequently, posing potentially significant environmental harms. We propose a five-step pathway for clinical researchers to minimise the environmental impact of the natural language algorithms they create.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internal Medicine Journal
Internal Medicine Journal 医学-医学:内科
CiteScore
3.50
自引率
4.80%
发文量
600
审稿时长
3-6 weeks
期刊介绍: The Internal Medicine Journal is the official journal of the Adult Medicine Division of The Royal Australasian College of Physicians (RACP). Its purpose is to publish high-quality internationally competitive peer-reviewed original medical research, both laboratory and clinical, relating to the study and research of human disease. Papers will be considered from all areas of medical practice and science. The Journal also has a major role in continuing medical education and publishes review articles relevant to physician education.
期刊最新文献
Final results of the National Oncology Mentorship Program 2023 and its impact on burnout and professional fulfilment. Platelet factor 4 immune disease: medical emergencies that look like heparin-induced thrombocytopenia. Correction to: 'Managing cancer-related pain in the setting of proven IgE-mediated opioid anaphylaxis'. Real-world impact of pembrolizumab availability for deficient mismatch repair metastatic colorectal cancer. Environmental impact of large language models in medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1