利用两倍相位循环和双编码器神经网络联合抑制心脏 bSSFP cineing banding 和血流伪影。

IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Magnetic Resonance Pub Date : 2024-11-07 DOI:10.1016/j.jocmr.2024.101123
Zhuo Chen, Yiwen Gong, Haiyang Chen, Yixin Emu, Juan Gao, Zhongjie Zhou, Yiwen Shen, Xin Tang, Sha Hua, Wei Jin, Chenxi Hu
{"title":"利用两倍相位循环和双编码器神经网络联合抑制心脏 bSSFP cineing banding 和血流伪影。","authors":"Zhuo Chen, Yiwen Gong, Haiyang Chen, Yixin Emu, Juan Gao, Zhongjie Zhou, Yiwen Shen, Xin Tang, Sha Hua, Wei Jin, Chenxi Hu","doi":"10.1016/j.jocmr.2024.101123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac bSSFP cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P-SSFP+Network) for a joint suppression of banding and flow artifacts in cardiac cine imaging.</p><p><strong>Methods: </strong>A dual-encoder neural network was trained on 1620 pairs of phase-cycled left ventricular (LV) cine images collected from 18 healthy subjects. Twenty healthy subjects and 25 patients were prospectively scanned using the proposed 2P-SSFP sequence. bSSFP cine of a single RF phase increment (1P-SSFP), bSSFP cine of a single RF phase increment with a network-based artifact reduction (1P-SSFP+Network), the averaging of the two phase-cycled images (2P-SSFP+Average), and the proposed method were mutually compared, in terms of artifact suppression performance in the LV, generalizability over altered scan parameters and scanners, suppression of large-area banding artifacts in the left atrium (LA), and accuracy of downstream segmentation tasks.</p><p><strong>Results: </strong>In the healthy subjects, 2P-SSFP+Network showed robust suppressions of artifacts across a range of phase combinations. Compared with 1P-SSFP and 2P-SSFP+Average, 2P-SSFP+Network improved banding artifacts (3.85±0.67 and 4.50±0.45 vs 5.00±0.00, P<0.01 and P=0.02, respectively), flow artifacts (3.35±0.78 and 2.10±0.77 vs 4.90±0.20, both P<0.01), and overall image quality (3.25±0.51 and 2.30±0.60 vs 4.75±0.25, both P<0.01). 1P-SSFP+Network and 2P-SSFP+Network achieved a similar artifact suppression performance, yet the latter had fewer hallucinations (two-chamber, 4.25±0.51 vs 4.85±0.45, P=0.04; four-chamber, 3.45±1.21 vs 4.65±0.50, P=0.03; and LA, 3.35±1.00 vs 4.65±0.45, P<0.01). Furthermore, in the pulmonary veins and LA, 1P-SSFP+Network could not eliminate banding artifacts since they occupied a large area, whereas 2P-SSFP+Network reliably suppressed the artifacts. In the downstream automated myocardial segmentation task, 2P-SSFP+Network achieved more accurate segmentations than 1P-SSFP with different phase increments.</p><p><strong>Conclusions: </strong>2P-SSFP+Network jointly suppresses banding and flow artifacts while manifesting a good generalizability against variations of anatomy and scan parameters. It provides a feasible solution for robust suppression of the two types of artifacts in bSSFP cine imaging.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101123"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint suppression of cardiac bSSFP cine banding and flow artifacts using twofold phase-cycling and a dual-encoder neural network.\",\"authors\":\"Zhuo Chen, Yiwen Gong, Haiyang Chen, Yixin Emu, Juan Gao, Zhongjie Zhou, Yiwen Shen, Xin Tang, Sha Hua, Wei Jin, Chenxi Hu\",\"doi\":\"10.1016/j.jocmr.2024.101123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiac bSSFP cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P-SSFP+Network) for a joint suppression of banding and flow artifacts in cardiac cine imaging.</p><p><strong>Methods: </strong>A dual-encoder neural network was trained on 1620 pairs of phase-cycled left ventricular (LV) cine images collected from 18 healthy subjects. Twenty healthy subjects and 25 patients were prospectively scanned using the proposed 2P-SSFP sequence. bSSFP cine of a single RF phase increment (1P-SSFP), bSSFP cine of a single RF phase increment with a network-based artifact reduction (1P-SSFP+Network), the averaging of the two phase-cycled images (2P-SSFP+Average), and the proposed method were mutually compared, in terms of artifact suppression performance in the LV, generalizability over altered scan parameters and scanners, suppression of large-area banding artifacts in the left atrium (LA), and accuracy of downstream segmentation tasks.</p><p><strong>Results: </strong>In the healthy subjects, 2P-SSFP+Network showed robust suppressions of artifacts across a range of phase combinations. Compared with 1P-SSFP and 2P-SSFP+Average, 2P-SSFP+Network improved banding artifacts (3.85±0.67 and 4.50±0.45 vs 5.00±0.00, P<0.01 and P=0.02, respectively), flow artifacts (3.35±0.78 and 2.10±0.77 vs 4.90±0.20, both P<0.01), and overall image quality (3.25±0.51 and 2.30±0.60 vs 4.75±0.25, both P<0.01). 1P-SSFP+Network and 2P-SSFP+Network achieved a similar artifact suppression performance, yet the latter had fewer hallucinations (two-chamber, 4.25±0.51 vs 4.85±0.45, P=0.04; four-chamber, 3.45±1.21 vs 4.65±0.50, P=0.03; and LA, 3.35±1.00 vs 4.65±0.45, P<0.01). Furthermore, in the pulmonary veins and LA, 1P-SSFP+Network could not eliminate banding artifacts since they occupied a large area, whereas 2P-SSFP+Network reliably suppressed the artifacts. In the downstream automated myocardial segmentation task, 2P-SSFP+Network achieved more accurate segmentations than 1P-SSFP with different phase increments.</p><p><strong>Conclusions: </strong>2P-SSFP+Network jointly suppresses banding and flow artifacts while manifesting a good generalizability against variations of anatomy and scan parameters. It provides a feasible solution for robust suppression of the two types of artifacts in bSSFP cine imaging.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101123\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2024.101123\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101123","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:心脏 bSSFP cine 成像受到非共振引起的带状和血流伪影的影响。这项工作旨在开发一种基于神经网络重建的双倍相位循环序列(2P-SSFP+网络),以共同抑制心脏 cine 成像中的带状和流动伪影:在从 18 名健康受试者采集的 1620 对相位循环左心室(LV)电影图像上训练了双编码器神经网络。使用提议的 2P-SSFP 序列对 20 名健康受试者和 25 名患者进行了前瞻性扫描。对单个射频相位增量的 bSSFP cine(1P-SSFP)、单个射频相位增量的 bSSFP cine 和基于网络的伪影抑制(1P-SSFP+网络)、两个相位循环图像的平均值(2P-SSFP+平均值)以及提议的方法进行了相互比较、在左心室的伪影抑制性能、对改变的扫描参数和扫描仪的通用性、左心房(LA)大面积带状伪影的抑制以及下游分割任务的准确性等方面进行了相互比较。结果:在健康受试者中,2P-SSFP+Network 对各种相位组合的伪影都有很强的抑制作用。与 1P-SSFP 和 2P-SSFP+Average 相比,2P-SSFP+Network 改善了带状伪影(3.85±0.67 和 4.50±0.45 vs 5.00±0.00,PConclusions:2P-SSFP+网络可联合抑制带状伪影和血流伪影,同时对解剖结构和扫描参数的变化具有良好的通用性。它为在 bSSFP cine 成像中稳健抑制这两种伪影提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint suppression of cardiac bSSFP cine banding and flow artifacts using twofold phase-cycling and a dual-encoder neural network.

Background: Cardiac bSSFP cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P-SSFP+Network) for a joint suppression of banding and flow artifacts in cardiac cine imaging.

Methods: A dual-encoder neural network was trained on 1620 pairs of phase-cycled left ventricular (LV) cine images collected from 18 healthy subjects. Twenty healthy subjects and 25 patients were prospectively scanned using the proposed 2P-SSFP sequence. bSSFP cine of a single RF phase increment (1P-SSFP), bSSFP cine of a single RF phase increment with a network-based artifact reduction (1P-SSFP+Network), the averaging of the two phase-cycled images (2P-SSFP+Average), and the proposed method were mutually compared, in terms of artifact suppression performance in the LV, generalizability over altered scan parameters and scanners, suppression of large-area banding artifacts in the left atrium (LA), and accuracy of downstream segmentation tasks.

Results: In the healthy subjects, 2P-SSFP+Network showed robust suppressions of artifacts across a range of phase combinations. Compared with 1P-SSFP and 2P-SSFP+Average, 2P-SSFP+Network improved banding artifacts (3.85±0.67 and 4.50±0.45 vs 5.00±0.00, P<0.01 and P=0.02, respectively), flow artifacts (3.35±0.78 and 2.10±0.77 vs 4.90±0.20, both P<0.01), and overall image quality (3.25±0.51 and 2.30±0.60 vs 4.75±0.25, both P<0.01). 1P-SSFP+Network and 2P-SSFP+Network achieved a similar artifact suppression performance, yet the latter had fewer hallucinations (two-chamber, 4.25±0.51 vs 4.85±0.45, P=0.04; four-chamber, 3.45±1.21 vs 4.65±0.50, P=0.03; and LA, 3.35±1.00 vs 4.65±0.45, P<0.01). Furthermore, in the pulmonary veins and LA, 1P-SSFP+Network could not eliminate banding artifacts since they occupied a large area, whereas 2P-SSFP+Network reliably suppressed the artifacts. In the downstream automated myocardial segmentation task, 2P-SSFP+Network achieved more accurate segmentations than 1P-SSFP with different phase increments.

Conclusions: 2P-SSFP+Network jointly suppresses banding and flow artifacts while manifesting a good generalizability against variations of anatomy and scan parameters. It provides a feasible solution for robust suppression of the two types of artifacts in bSSFP cine imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
期刊最新文献
Absence of cardiac impairment in patients after SARS-CoV-2 infection: a long-term follow-up study. Simultaneous Multislice Cardiac Multimapping based on Locally Low-Rank and Sparsity Constraints. Joint suppression of cardiac bSSFP cine banding and flow artifacts using twofold phase-cycling and a dual-encoder neural network. Non-Invasively Measured Myocardial Torsional Modulus: Comparison to Invasive Evaluation of Diastolic Function. Design and Rationale of MYOFLAME-19 RCT: MYOcardial protection to reduce inFLAMmatory heart disease due to COVID-19 Infection using CMR Endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1