Xuan Xu, Alyssa Charrier, Sunny Congrove, Jeremiah Ockunzzi, David A Buchner
{"title":"脂肪细胞中转录因子 ZBTB9 对 PPARγ 信号的细胞状态依赖性调控","authors":"Xuan Xu, Alyssa Charrier, Sunny Congrove, Jeremiah Ockunzzi, David A Buchner","doi":"10.1016/j.jbc.2024.107985","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 is a widely expressed but poorly studied transcription factor that was predicted to interact with PPARγ based on large-scale protein-protein interaction experiments. In addition, genome-wide association studies (GWAS) revealed associations between ZBTB9 and BMI, T2D risk, and HbA1c levels. Here we show that Zbtb9 deficiency in mature adipocytes decreased PPARγ activity and protein level, and thus acts as a positive regulator of PPARγ signaling. In contrast, Zbtb9 deficiency in 3T3-L1 and human preadipocytes increased PPARγ levels and enhanced adipogenesis. Transcriptomic and transcription factor binding site analyses of Zbtb9 deficient preadipocytes revealed that the E2F pathway, controlled by the E2F family of transcription factors that are classically associated with cell cycle regulation, was among the most upregulated pathways. E2F1 positively regulates adipogenesis by promoting Pparg expression, independent of its cell cycle role, via direct binding to the Pparg promoter early during adipogenesis. RB phosphorylation (pRB), which regulates E2F activity, was also upregulated in Zbtb9 deficient preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenesis. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via pRB-E2F signaling. Our findings reveal cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipocyte biology as both a positive and negative regulator of PPARγ signaling depending on the cellular context, and thus may be important in the pathogenesis of obesity and T2D.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107985"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-state dependent regulation of PPARγ signaling by the transcription factor ZBTB9 in adipocytes.\",\"authors\":\"Xuan Xu, Alyssa Charrier, Sunny Congrove, Jeremiah Ockunzzi, David A Buchner\",\"doi\":\"10.1016/j.jbc.2024.107985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 is a widely expressed but poorly studied transcription factor that was predicted to interact with PPARγ based on large-scale protein-protein interaction experiments. In addition, genome-wide association studies (GWAS) revealed associations between ZBTB9 and BMI, T2D risk, and HbA1c levels. Here we show that Zbtb9 deficiency in mature adipocytes decreased PPARγ activity and protein level, and thus acts as a positive regulator of PPARγ signaling. In contrast, Zbtb9 deficiency in 3T3-L1 and human preadipocytes increased PPARγ levels and enhanced adipogenesis. Transcriptomic and transcription factor binding site analyses of Zbtb9 deficient preadipocytes revealed that the E2F pathway, controlled by the E2F family of transcription factors that are classically associated with cell cycle regulation, was among the most upregulated pathways. E2F1 positively regulates adipogenesis by promoting Pparg expression, independent of its cell cycle role, via direct binding to the Pparg promoter early during adipogenesis. RB phosphorylation (pRB), which regulates E2F activity, was also upregulated in Zbtb9 deficient preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenesis. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via pRB-E2F signaling. Our findings reveal cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipocyte biology as both a positive and negative regulator of PPARγ signaling depending on the cellular context, and thus may be important in the pathogenesis of obesity and T2D.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"107985\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.107985\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107985","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cell-state dependent regulation of PPARγ signaling by the transcription factor ZBTB9 in adipocytes.
Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 is a widely expressed but poorly studied transcription factor that was predicted to interact with PPARγ based on large-scale protein-protein interaction experiments. In addition, genome-wide association studies (GWAS) revealed associations between ZBTB9 and BMI, T2D risk, and HbA1c levels. Here we show that Zbtb9 deficiency in mature adipocytes decreased PPARγ activity and protein level, and thus acts as a positive regulator of PPARγ signaling. In contrast, Zbtb9 deficiency in 3T3-L1 and human preadipocytes increased PPARγ levels and enhanced adipogenesis. Transcriptomic and transcription factor binding site analyses of Zbtb9 deficient preadipocytes revealed that the E2F pathway, controlled by the E2F family of transcription factors that are classically associated with cell cycle regulation, was among the most upregulated pathways. E2F1 positively regulates adipogenesis by promoting Pparg expression, independent of its cell cycle role, via direct binding to the Pparg promoter early during adipogenesis. RB phosphorylation (pRB), which regulates E2F activity, was also upregulated in Zbtb9 deficient preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenesis. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via pRB-E2F signaling. Our findings reveal cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipocyte biology as both a positive and negative regulator of PPARγ signaling depending on the cellular context, and thus may be important in the pathogenesis of obesity and T2D.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.