探索针对阿尔茨海默病治疗的植物化学蛋白激酶 C alpha 抑制剂。

IF 3.4 3区 医学 Q2 NEUROSCIENCES Journal of Alzheimer's Disease Pub Date : 2024-11-10 DOI:10.1177/13872877241289620
A A Aazad, Arunabh Choudhury, Afzal Hussain, Mohamed F AlAjmi, Taj Mohammad, Sneh Prabha, Manoj Kumar Sharma, Anas Shamsi, Md Imtaiyaz Hassan
{"title":"探索针对阿尔茨海默病治疗的植物化学蛋白激酶 C alpha 抑制剂。","authors":"A A Aazad, Arunabh Choudhury, Afzal Hussain, Mohamed F AlAjmi, Taj Mohammad, Sneh Prabha, Manoj Kumar Sharma, Anas Shamsi, Md Imtaiyaz Hassan","doi":"10.1177/13872877241289620","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is characterized by neurodegeneration linked to amyloid-β (Aβ) plaques and tau protein tangles. Protein kinase C alpha (PKCα) plays a crucial role in modulating amyloid-β protein precursor (AβPP) processing, potentially mitigating AD progression. Consequently, PKCα stands out as a promising target for AD therapy.</p><p><strong>Objective: </strong>Despite the identification of numerous inhibitors, the pursuit of more effective and precisely targeted PKCα inhibitors remains crucial.</p><p><strong>Methods: </strong>In this study, we employed an integrated virtual screening approach of molecular docking and molecular dynamics (MD) simulations to identify phytochemical inhibitors of PKCα from the IMPPAT database.</p><p><strong>Results: </strong>Molecular docking screening via InstaDock identified compounds with strong binding affinities to PKCα. Subsequent ADMET and PASS analyses filtered out compounds with favorable pharmacokinetic profiles. Interaction analysis using Discovery Studio Visualizer and PyMOL further elucidated binding conformations of selected compounds with PKCα. Top hits underwent 200 ns MD simulations using GROMACS to validate stability of the interactions. Finally, we propose two phytochemicals, Kammogenin and Imperialine, with appreciable drug-likeliness and binding potential with PKCα.</p><p><strong>Conclusions: </strong>Taken together, the findings suggest Kammogenin and Imperialine as potential PKCα inhibitors, highlighting their therapeutic promise for AD after further validation.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877241289620"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring phytochemical inhibitors of protein kinase C alpha for therapeutic targeting of Alzheimer's disease.\",\"authors\":\"A A Aazad, Arunabh Choudhury, Afzal Hussain, Mohamed F AlAjmi, Taj Mohammad, Sneh Prabha, Manoj Kumar Sharma, Anas Shamsi, Md Imtaiyaz Hassan\",\"doi\":\"10.1177/13872877241289620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alzheimer's disease (AD) is characterized by neurodegeneration linked to amyloid-β (Aβ) plaques and tau protein tangles. Protein kinase C alpha (PKCα) plays a crucial role in modulating amyloid-β protein precursor (AβPP) processing, potentially mitigating AD progression. Consequently, PKCα stands out as a promising target for AD therapy.</p><p><strong>Objective: </strong>Despite the identification of numerous inhibitors, the pursuit of more effective and precisely targeted PKCα inhibitors remains crucial.</p><p><strong>Methods: </strong>In this study, we employed an integrated virtual screening approach of molecular docking and molecular dynamics (MD) simulations to identify phytochemical inhibitors of PKCα from the IMPPAT database.</p><p><strong>Results: </strong>Molecular docking screening via InstaDock identified compounds with strong binding affinities to PKCα. Subsequent ADMET and PASS analyses filtered out compounds with favorable pharmacokinetic profiles. Interaction analysis using Discovery Studio Visualizer and PyMOL further elucidated binding conformations of selected compounds with PKCα. Top hits underwent 200 ns MD simulations using GROMACS to validate stability of the interactions. Finally, we propose two phytochemicals, Kammogenin and Imperialine, with appreciable drug-likeliness and binding potential with PKCα.</p><p><strong>Conclusions: </strong>Taken together, the findings suggest Kammogenin and Imperialine as potential PKCα inhibitors, highlighting their therapeutic promise for AD after further validation.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":\" \",\"pages\":\"13872877241289620\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877241289620\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241289620","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:阿尔茨海默病(AD)的特征是与淀粉样蛋白-β(Aβ)斑块和 tau 蛋白缠结有关的神经变性。蛋白激酶 C α(PKCα)在调节淀粉样-β蛋白前体(AβPP)的处理过程中起着至关重要的作用,有可能缓解 AD 的进展。因此,PKCα有望成为治疗AD的靶点:尽管已经发现了许多抑制剂,但寻求更有效、更精确的 PKCα 靶向抑制剂仍然至关重要:本研究采用分子对接和分子动力学(MD)模拟的综合虚拟筛选方法,从IMPPAT数据库中鉴定PKCα的植物化学抑制剂:结果:通过InstaDock进行的分子对接筛选确定了与PKCα具有强结合亲和力的化合物。随后的 ADMET 和 PASS 分析筛选出了药代动力学特征良好的化合物。使用 Discovery Studio Visualizer 和 PyMOL 进行的相互作用分析进一步阐明了所选化合物与 PKCα 的结合构象。利用 GROMACS 对热门化合物进行了 200 ns MD 模拟,以验证相互作用的稳定性。最后,我们提出了两种植物化学物质--Kammogenin和Imperialine,它们与PKCα具有明显的药物亲和性和结合潜力:综上所述,研究结果表明Kammogenin和Imperialine是潜在的PKCα抑制剂,在经过进一步验证后,它们有望治疗AD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring phytochemical inhibitors of protein kinase C alpha for therapeutic targeting of Alzheimer's disease.

Background: Alzheimer's disease (AD) is characterized by neurodegeneration linked to amyloid-β (Aβ) plaques and tau protein tangles. Protein kinase C alpha (PKCα) plays a crucial role in modulating amyloid-β protein precursor (AβPP) processing, potentially mitigating AD progression. Consequently, PKCα stands out as a promising target for AD therapy.

Objective: Despite the identification of numerous inhibitors, the pursuit of more effective and precisely targeted PKCα inhibitors remains crucial.

Methods: In this study, we employed an integrated virtual screening approach of molecular docking and molecular dynamics (MD) simulations to identify phytochemical inhibitors of PKCα from the IMPPAT database.

Results: Molecular docking screening via InstaDock identified compounds with strong binding affinities to PKCα. Subsequent ADMET and PASS analyses filtered out compounds with favorable pharmacokinetic profiles. Interaction analysis using Discovery Studio Visualizer and PyMOL further elucidated binding conformations of selected compounds with PKCα. Top hits underwent 200 ns MD simulations using GROMACS to validate stability of the interactions. Finally, we propose two phytochemicals, Kammogenin and Imperialine, with appreciable drug-likeliness and binding potential with PKCα.

Conclusions: Taken together, the findings suggest Kammogenin and Imperialine as potential PKCα inhibitors, highlighting their therapeutic promise for AD after further validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alzheimer's Disease
Journal of Alzheimer's Disease 医学-神经科学
CiteScore
6.40
自引率
7.50%
发文量
1327
审稿时长
2 months
期刊介绍: The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.
期刊最新文献
A multi-modal and multi-stage region of interest-based fusion network convolutional neural network model to differentiate progressive mild cognitive impairment from stable mild cognitive impairment. Structural white matter connectivity differences independent of gray matter loss in mild cognitive impairment with neuropsychiatric symptoms: Early indicators of Alzheimer's disease using network-based statistics. Associations among healthy lifestyle characteristics, neuroinflammation, and cerebrospinal fluid core biomarkers of Alzheimer's disease in cognitively intact adults: The CABLE study. Investigating interleukin-8 in Alzheimer's disease: A comprehensive review. Tear fluid reflects the altered protein expressions of Alzheimer's disease patients in proteins involved in protein repair and clearance system or the regulation of cytoskeleton.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1