STALL-seq:从大型随机序列文库中选择细菌和真核生物翻译终止序列的 mRNA 显示。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2024-11-12 DOI:10.1016/j.jbc.2024.107978
Tadashi Hamano, Yu Nagumo, Tomofumi Umehara, Kota Hirono, Kei Fujiwara, Hideki Taguchi, Yuhei Chadani, Nobuhide Doi
{"title":"STALL-seq:从大型随机序列文库中选择细菌和真核生物翻译终止序列的 mRNA 显示。","authors":"Tadashi Hamano, Yu Nagumo, Tomofumi Umehara, Kota Hirono, Kei Fujiwara, Hideki Taguchi, Yuhei Chadani, Nobuhide Doi","doi":"10.1016/j.jbc.2024.107978","DOIUrl":null,"url":null,"abstract":"<p><p>Translational arrest is a phenomenon wherein a temporary pause or slowing of the translation elongation reaction occurs due to the interaction between ribosome and nascent peptide. Recent studies have revealed that translational arrest peptides are involved in intracellular protein homeostasis regulatory functions, such as gene expression regulation at the translational level and regulation of cotranslational protein folding. Herein, we established a method for the large-scale in vitro selection of translational arrest peptides from DNA libraries by combining a modified mRNA display method and deep sequencing. We performed in vitro selection of translational arrest sequences from random-sequence libraries via mRNA display based on the E. coli PURE system or wheat germ extract. Following several rounds of affinity selection, we obtained various candidate sequences that were not similar to known arrest peptides and subsequently confirmed their ribosome stalling activity by peptidyl-tRNA detection and toeprinting assay. Following the site-directed mutagenesis of the selected sequences, these clones were found to contain novel arrest peptide motifs. This method, termed as STALL-seq (Selection of Translational Arrest sequences from Large Library sequencing), could be useful for the large-scale investigation of translational arrest sequences acting on both bacterial and eukaryotic ribosomes and could help discover novel intracellular regulatory mechanisms.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107978"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STALL-seq: mRNA-display selection of bacterial and eukaryotic translational arrest sequences from large random-sequence libraries.\",\"authors\":\"Tadashi Hamano, Yu Nagumo, Tomofumi Umehara, Kota Hirono, Kei Fujiwara, Hideki Taguchi, Yuhei Chadani, Nobuhide Doi\",\"doi\":\"10.1016/j.jbc.2024.107978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Translational arrest is a phenomenon wherein a temporary pause or slowing of the translation elongation reaction occurs due to the interaction between ribosome and nascent peptide. Recent studies have revealed that translational arrest peptides are involved in intracellular protein homeostasis regulatory functions, such as gene expression regulation at the translational level and regulation of cotranslational protein folding. Herein, we established a method for the large-scale in vitro selection of translational arrest peptides from DNA libraries by combining a modified mRNA display method and deep sequencing. We performed in vitro selection of translational arrest sequences from random-sequence libraries via mRNA display based on the E. coli PURE system or wheat germ extract. Following several rounds of affinity selection, we obtained various candidate sequences that were not similar to known arrest peptides and subsequently confirmed their ribosome stalling activity by peptidyl-tRNA detection and toeprinting assay. Following the site-directed mutagenesis of the selected sequences, these clones were found to contain novel arrest peptide motifs. This method, termed as STALL-seq (Selection of Translational Arrest sequences from Large Library sequencing), could be useful for the large-scale investigation of translational arrest sequences acting on both bacterial and eukaryotic ribosomes and could help discover novel intracellular regulatory mechanisms.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"107978\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.107978\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107978","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

翻译停滞是指由于核糖体和新生肽之间的相互作用而导致翻译延伸反应暂时停顿或减缓的现象。最新研究发现,翻译停滞肽参与细胞内蛋白质平衡调控功能,如翻译水平的基因表达调控和共翻译蛋白质折叠调控。在此,我们结合改进的 mRNA 展示法和深度测序法,建立了一种从 DNA 文库中大规模体外筛选翻译抑制肽的方法。我们通过基于大肠杆菌 PURE 系统或小麦胚芽提取物的 mRNA 展示,从随机序列文库中体外筛选出了翻译抑制序列。经过几轮亲和筛选后,我们获得了与已知停滞肽不相似的各种候选序列,随后通过肽基-tRNA检测和图谱分析证实了它们的核糖体停滞活性。对所选序列进行定点突变后,发现这些克隆含有新的停滞肽基序。这种方法被称为 STALL-seq(从大型文库测序中选择翻译停滞序列),可用于大规模研究作用于细菌和真核生物核糖体的翻译停滞序列,并有助于发现新的细胞内调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STALL-seq: mRNA-display selection of bacterial and eukaryotic translational arrest sequences from large random-sequence libraries.

Translational arrest is a phenomenon wherein a temporary pause or slowing of the translation elongation reaction occurs due to the interaction between ribosome and nascent peptide. Recent studies have revealed that translational arrest peptides are involved in intracellular protein homeostasis regulatory functions, such as gene expression regulation at the translational level and regulation of cotranslational protein folding. Herein, we established a method for the large-scale in vitro selection of translational arrest peptides from DNA libraries by combining a modified mRNA display method and deep sequencing. We performed in vitro selection of translational arrest sequences from random-sequence libraries via mRNA display based on the E. coli PURE system or wheat germ extract. Following several rounds of affinity selection, we obtained various candidate sequences that were not similar to known arrest peptides and subsequently confirmed their ribosome stalling activity by peptidyl-tRNA detection and toeprinting assay. Following the site-directed mutagenesis of the selected sequences, these clones were found to contain novel arrest peptide motifs. This method, termed as STALL-seq (Selection of Translational Arrest sequences from Large Library sequencing), could be useful for the large-scale investigation of translational arrest sequences acting on both bacterial and eukaryotic ribosomes and could help discover novel intracellular regulatory mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. Biophysical characterization of the dystrophin C-terminal domain: Dystrophin interacts differentially with dystrobrevin isoforms. The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase. The Hsc70 system maintains the synaptic SNARE protein SNAP-25 in an assembly-competent state and delays its aggregation. Impaired branched chain amino acid (BCAA) catabolism during adipocyte differentiation decreases glycolytic flux.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1