含吡唑连接磺酰胺分子的塞来昔布衍生物的乳过氧化物酶抑制作用:抗氧化能力、抗菌活性和分子对接研究。

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biochemical and Molecular Toxicology Pub Date : 2024-11-11 DOI:10.1002/jbt.70055
Songül Bayrak, Serpil Gerni, Cansu Öztürk, Züleyha Almaz, Çetin Bayrak, Namık Kılınç, Hasan Özdemir
{"title":"含吡唑连接磺酰胺分子的塞来昔布衍生物的乳过氧化物酶抑制作用:抗氧化能力、抗菌活性和分子对接研究。","authors":"Songül Bayrak,&nbsp;Serpil Gerni,&nbsp;Cansu Öztürk,&nbsp;Züleyha Almaz,&nbsp;Çetin Bayrak,&nbsp;Namık Kılınç,&nbsp;Hasan Özdemir","doi":"10.1002/jbt.70055","DOIUrl":null,"url":null,"abstract":"<p>Celecoxib derivatives that contain the pyrazole-linked sulfonamide moiety were synthesized, and the in vitro inhibitory impacts of the aforesaid compounds against the lactoperoxidase (LPO) enzyme were researched. To this end, LPO was purified using the affinity chromatography technique with a yield of 12.63% (319.23-fold). The results showed that the aromatic pyrazole compound (compound <b>1</b>) containing 2,3-dimethoxyphenyl functional groups was the most effective LPO inhibitor with a K<sub>i</sub> value of 3.2 ± 0.7 nM and noncompetitive inhibition type. The second section of the study tested the previously synthesized compounds to reveal their antioxidant and antimicrobial properties. The above-mentioned compound also displayed high activity levels compared to standard antibiotics and antifungals, while all other compounds also showed antibacterial activity. In the three antioxidant methods we used, the compound with 2,5-dimethoxy phenyl groups obtained from the reaction of the aromatic pyrazole compound with propionic anhydride in the presence of NEt<sub>3</sub> displayed the highest activity. Furthermore, molecular docking and molecular mechanics studies were conducted to complement and validate the experimental findings. The results obtained from these computational analyses are highly consistent with the experimental data.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70055","citationCount":"0","resultStr":"{\"title\":\"Lactoperoxidase Inhibition of Celecoxib Derivatives Containing the Pyrazole Linked-Sulfonamide Moiety: Antioxidant Capacity, Antimicrobial Activity, and Molecular Docking Studies\",\"authors\":\"Songül Bayrak,&nbsp;Serpil Gerni,&nbsp;Cansu Öztürk,&nbsp;Züleyha Almaz,&nbsp;Çetin Bayrak,&nbsp;Namık Kılınç,&nbsp;Hasan Özdemir\",\"doi\":\"10.1002/jbt.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Celecoxib derivatives that contain the pyrazole-linked sulfonamide moiety were synthesized, and the in vitro inhibitory impacts of the aforesaid compounds against the lactoperoxidase (LPO) enzyme were researched. To this end, LPO was purified using the affinity chromatography technique with a yield of 12.63% (319.23-fold). The results showed that the aromatic pyrazole compound (compound <b>1</b>) containing 2,3-dimethoxyphenyl functional groups was the most effective LPO inhibitor with a K<sub>i</sub> value of 3.2 ± 0.7 nM and noncompetitive inhibition type. The second section of the study tested the previously synthesized compounds to reveal their antioxidant and antimicrobial properties. The above-mentioned compound also displayed high activity levels compared to standard antibiotics and antifungals, while all other compounds also showed antibacterial activity. In the three antioxidant methods we used, the compound with 2,5-dimethoxy phenyl groups obtained from the reaction of the aromatic pyrazole compound with propionic anhydride in the presence of NEt<sub>3</sub> displayed the highest activity. Furthermore, molecular docking and molecular mechanics studies were conducted to complement and validate the experimental findings. The results obtained from these computational analyses are highly consistent with the experimental data.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70055\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70055","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

合成了含有吡唑连接磺酰胺分子的塞来昔布衍生物,并研究了上述化合物对乳过氧化物酶(LPO)的体外抑制作用。为此,利用亲和层析技术纯化了 LPO,纯化率为 12.63%(319.23 倍)。结果表明,含有 2,3-二甲氧基苯基官能团的芳香族吡唑化合物(化合物 1)是最有效的 LPO 抑制剂,其 Ki 值为 3.2 ± 0.7 nM,属于非竞争性抑制类型。研究的第二部分测试了之前合成的化合物,以揭示其抗氧化和抗菌特性。与标准抗生素和抗真菌药相比,上述化合物也显示出较高的活性水平,而其他所有化合物也都显示出抗菌活性。在我们使用的三种抗氧化方法中,芳香族吡唑化合物与丙酸酐在 NEt3 存在下反应得到的带有 2,5-二甲氧基苯基的化合物显示出了最高的活性。此外,还进行了分子对接和分子力学研究,以补充和验证实验结果。这些计算分析得出的结果与实验数据高度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lactoperoxidase Inhibition of Celecoxib Derivatives Containing the Pyrazole Linked-Sulfonamide Moiety: Antioxidant Capacity, Antimicrobial Activity, and Molecular Docking Studies

Celecoxib derivatives that contain the pyrazole-linked sulfonamide moiety were synthesized, and the in vitro inhibitory impacts of the aforesaid compounds against the lactoperoxidase (LPO) enzyme were researched. To this end, LPO was purified using the affinity chromatography technique with a yield of 12.63% (319.23-fold). The results showed that the aromatic pyrazole compound (compound 1) containing 2,3-dimethoxyphenyl functional groups was the most effective LPO inhibitor with a Ki value of 3.2 ± 0.7 nM and noncompetitive inhibition type. The second section of the study tested the previously synthesized compounds to reveal their antioxidant and antimicrobial properties. The above-mentioned compound also displayed high activity levels compared to standard antibiotics and antifungals, while all other compounds also showed antibacterial activity. In the three antioxidant methods we used, the compound with 2,5-dimethoxy phenyl groups obtained from the reaction of the aromatic pyrazole compound with propionic anhydride in the presence of NEt3 displayed the highest activity. Furthermore, molecular docking and molecular mechanics studies were conducted to complement and validate the experimental findings. The results obtained from these computational analyses are highly consistent with the experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
期刊最新文献
Genetic Interaction Between F-Box Encoding UCC1 and RRM3 Regulates Growth Rate, Cell Size, and Stress Tolerance in Saccharomyces cerevisiae. Issue information Astaxanthin-S-Allyl Cysteine Ester Protects Pancreatic β-Cell From Glucolipotoxicity by Suppressing Oxidative Stress, Endoplasmic Reticulum Stress and mTOR Pathway Dysregulation Identification of the Oncogenic Role of the Circ_0001326/miR-577/VDAC1 Cascade in Prostate Cancer In Vitro and Vivo Experiments Revealing Astragalin Inhibited Lung Adenocarcinoma Development via LINC00582/miR-140-3P/PDPK1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1