Dina Reda, Abdo A Elfiky, M Elnagdy, Magdy M Khalil
{"title":"低氧诱导因子(HIF-1alpha)的分子对接和分子动力学:寻找潜在的抑制剂。","authors":"Dina Reda, Abdo A Elfiky, M Elnagdy, Magdy M Khalil","doi":"10.1080/07391102.2024.2425839","DOIUrl":null,"url":null,"abstract":"<p><p>HIF-1α is a primary regulator in the adaptation of cancer cells to hypoxia. The aim was to find out new inhibitors of the HIF-1α. A molecular dynamic (MD) simulation performed on HIF-1α showed stable dynamic features. Virtual screening of 217 anticancer drugs was performed along with a positive control (2-Methoxyestradiolm, 2-ME2) on an optimized HIF-1α and dynamically simulated structure. Docking results produced two compounds namely pycnidione and nilotinib of high binding affinity -9.34 kcal/mol and -9.04 kcal/mol respectively, whereas 2-ME2 displayed a relatively lower affinity (-6.68 kcal/mol). For the three complexes, MD of 200 ns simulation was run. Data analysis showed that the three medications behaved similarly in the MD simulation. Nilotinib had a lower RMSD and higher SASA than the other complexes. In addition, the Nilotinib-HIF-1α combination had a lower RMSF value, a flatter Rg, and a number of hydrogen bonds similar to other complexes. MM-GBSA analysis revealed that nilotinib, pycnidione and 2-ME2 compounds had free binding energy of -23.77 ± 5.29, -21.85 ± 4.24 and -7.53 ± 6.62 kcal/mol respectively. Nilotinib and pycnidione bind competitively to HIF-1α, with nilotinib showing consistent molecular-dynamic properties. They relatively pass the blood-brain barrier, non-carcinogenic, and have IV-category acute oral toxicity. They have low CYP inhibitory characteristics. Further investigations are therefore warranted to elucidate their implications in hypoxia pathways, cell proliferation, apoptosis, survival, and metastatic potential.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-20"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular docking and molecular dynamics of hypoxia-inducible factor (HIF-1alpha): towards potential inhibitors.\",\"authors\":\"Dina Reda, Abdo A Elfiky, M Elnagdy, Magdy M Khalil\",\"doi\":\"10.1080/07391102.2024.2425839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HIF-1α is a primary regulator in the adaptation of cancer cells to hypoxia. The aim was to find out new inhibitors of the HIF-1α. A molecular dynamic (MD) simulation performed on HIF-1α showed stable dynamic features. Virtual screening of 217 anticancer drugs was performed along with a positive control (2-Methoxyestradiolm, 2-ME2) on an optimized HIF-1α and dynamically simulated structure. Docking results produced two compounds namely pycnidione and nilotinib of high binding affinity -9.34 kcal/mol and -9.04 kcal/mol respectively, whereas 2-ME2 displayed a relatively lower affinity (-6.68 kcal/mol). For the three complexes, MD of 200 ns simulation was run. Data analysis showed that the three medications behaved similarly in the MD simulation. Nilotinib had a lower RMSD and higher SASA than the other complexes. In addition, the Nilotinib-HIF-1α combination had a lower RMSF value, a flatter Rg, and a number of hydrogen bonds similar to other complexes. MM-GBSA analysis revealed that nilotinib, pycnidione and 2-ME2 compounds had free binding energy of -23.77 ± 5.29, -21.85 ± 4.24 and -7.53 ± 6.62 kcal/mol respectively. Nilotinib and pycnidione bind competitively to HIF-1α, with nilotinib showing consistent molecular-dynamic properties. They relatively pass the blood-brain barrier, non-carcinogenic, and have IV-category acute oral toxicity. They have low CYP inhibitory characteristics. Further investigations are therefore warranted to elucidate their implications in hypoxia pathways, cell proliferation, apoptosis, survival, and metastatic potential.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2425839\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2425839","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular docking and molecular dynamics of hypoxia-inducible factor (HIF-1alpha): towards potential inhibitors.
HIF-1α is a primary regulator in the adaptation of cancer cells to hypoxia. The aim was to find out new inhibitors of the HIF-1α. A molecular dynamic (MD) simulation performed on HIF-1α showed stable dynamic features. Virtual screening of 217 anticancer drugs was performed along with a positive control (2-Methoxyestradiolm, 2-ME2) on an optimized HIF-1α and dynamically simulated structure. Docking results produced two compounds namely pycnidione and nilotinib of high binding affinity -9.34 kcal/mol and -9.04 kcal/mol respectively, whereas 2-ME2 displayed a relatively lower affinity (-6.68 kcal/mol). For the three complexes, MD of 200 ns simulation was run. Data analysis showed that the three medications behaved similarly in the MD simulation. Nilotinib had a lower RMSD and higher SASA than the other complexes. In addition, the Nilotinib-HIF-1α combination had a lower RMSF value, a flatter Rg, and a number of hydrogen bonds similar to other complexes. MM-GBSA analysis revealed that nilotinib, pycnidione and 2-ME2 compounds had free binding energy of -23.77 ± 5.29, -21.85 ± 4.24 and -7.53 ± 6.62 kcal/mol respectively. Nilotinib and pycnidione bind competitively to HIF-1α, with nilotinib showing consistent molecular-dynamic properties. They relatively pass the blood-brain barrier, non-carcinogenic, and have IV-category acute oral toxicity. They have low CYP inhibitory characteristics. Further investigations are therefore warranted to elucidate their implications in hypoxia pathways, cell proliferation, apoptosis, survival, and metastatic potential.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.