Rohith Raali, Neha Sivakumar, Harsh Vardhan J, Suresh P K
{"title":"以线粒体动力学为靶点:一种在OSCC治疗中重新使用抗真菌药物的分子内方法。","authors":"Rohith Raali, Neha Sivakumar, Harsh Vardhan J, Suresh P K","doi":"10.1080/07391102.2024.2425831","DOIUrl":null,"url":null,"abstract":"<p><p>Drug repurposing for cancer treatment is a valuable strategy to identify existing drugs with known safety profiles that could combat the neoplasm, by reducing costs. Oral squamous cell carcinoma, an ulcer-proliferative lesion on the mucosal epithelium, is the most common oral malignancy. About 10% of cancer patients within the Indian subcontinent suffer from OSCC, primarily due to chewing of betel plant derivatives. Concomitant administration of the chemotherapeutic agent (Cisplatin/Paclitaxel) is the treatment of choice. Analysis of the oral mycobiome of OSCC patients has projected the role of Candida albicans in potentiating OSCC. Hence, repurposing antifungal drugs emerges as a promising approach, as these drugs could target both the cancer cells and the infection. Cancer cells often have heightened energy requirements, and targeting mitochondrial proteins to disrupt mitochondrial division and induce dysfunction contributing to cell death, offers a method for treating OSCC. We identified 18 mitochondrial targets playing a crucial role in the maintenance of mitochondrial homeostasis. They were docked against 125 antifungal ligand molecules sourced from PUBCHEM. Ligand profiling was performed using Lipinski's rule of 5, SwissADME and ProTox. Also, molecular dynamics and MM-PBSA were performed to validate our results. Among all protein ligand interactions, we observed that targeting DRP1 with itraconazole yielded superior binding and stability. Overall, lower toxicity and thumping ADME properties solidified the choice of ligand. We hope this experimental approach will enable us to provide a basis for selecting a lead molecule for a possible novel nano-formulation and validate our finding through in-vitro cell line-based testing.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-14"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting mitochondrial dynamics: an in-silico approach for repurposing antifungal drugs in OSCC treatment.\",\"authors\":\"Rohith Raali, Neha Sivakumar, Harsh Vardhan J, Suresh P K\",\"doi\":\"10.1080/07391102.2024.2425831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug repurposing for cancer treatment is a valuable strategy to identify existing drugs with known safety profiles that could combat the neoplasm, by reducing costs. Oral squamous cell carcinoma, an ulcer-proliferative lesion on the mucosal epithelium, is the most common oral malignancy. About 10% of cancer patients within the Indian subcontinent suffer from OSCC, primarily due to chewing of betel plant derivatives. Concomitant administration of the chemotherapeutic agent (Cisplatin/Paclitaxel) is the treatment of choice. Analysis of the oral mycobiome of OSCC patients has projected the role of Candida albicans in potentiating OSCC. Hence, repurposing antifungal drugs emerges as a promising approach, as these drugs could target both the cancer cells and the infection. Cancer cells often have heightened energy requirements, and targeting mitochondrial proteins to disrupt mitochondrial division and induce dysfunction contributing to cell death, offers a method for treating OSCC. We identified 18 mitochondrial targets playing a crucial role in the maintenance of mitochondrial homeostasis. They were docked against 125 antifungal ligand molecules sourced from PUBCHEM. Ligand profiling was performed using Lipinski's rule of 5, SwissADME and ProTox. Also, molecular dynamics and MM-PBSA were performed to validate our results. Among all protein ligand interactions, we observed that targeting DRP1 with itraconazole yielded superior binding and stability. Overall, lower toxicity and thumping ADME properties solidified the choice of ligand. We hope this experimental approach will enable us to provide a basis for selecting a lead molecule for a possible novel nano-formulation and validate our finding through in-vitro cell line-based testing.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2425831\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2425831","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting mitochondrial dynamics: an in-silico approach for repurposing antifungal drugs in OSCC treatment.
Drug repurposing for cancer treatment is a valuable strategy to identify existing drugs with known safety profiles that could combat the neoplasm, by reducing costs. Oral squamous cell carcinoma, an ulcer-proliferative lesion on the mucosal epithelium, is the most common oral malignancy. About 10% of cancer patients within the Indian subcontinent suffer from OSCC, primarily due to chewing of betel plant derivatives. Concomitant administration of the chemotherapeutic agent (Cisplatin/Paclitaxel) is the treatment of choice. Analysis of the oral mycobiome of OSCC patients has projected the role of Candida albicans in potentiating OSCC. Hence, repurposing antifungal drugs emerges as a promising approach, as these drugs could target both the cancer cells and the infection. Cancer cells often have heightened energy requirements, and targeting mitochondrial proteins to disrupt mitochondrial division and induce dysfunction contributing to cell death, offers a method for treating OSCC. We identified 18 mitochondrial targets playing a crucial role in the maintenance of mitochondrial homeostasis. They were docked against 125 antifungal ligand molecules sourced from PUBCHEM. Ligand profiling was performed using Lipinski's rule of 5, SwissADME and ProTox. Also, molecular dynamics and MM-PBSA were performed to validate our results. Among all protein ligand interactions, we observed that targeting DRP1 with itraconazole yielded superior binding and stability. Overall, lower toxicity and thumping ADME properties solidified the choice of ligand. We hope this experimental approach will enable us to provide a basis for selecting a lead molecule for a possible novel nano-formulation and validate our finding through in-vitro cell line-based testing.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.