{"title":"通过正向渗透进行海水淡化的氮化硼纳米片:分子动力学研究。","authors":"Amin Hamed Mashhadzadeh , Maryam Zarghami Dehaghani , Narges Vafa , Bahar Firoozabadi , Boris Golman , Christos Spitas , Konstantinos V. Kostas","doi":"10.1016/j.jmgm.2024.108905","DOIUrl":null,"url":null,"abstract":"<div><div>The global shortage of freshwater resources has spurred significant interest among scientists in the development of cost-effective and highly efficient water desalination methods. The forward osmosis (FO) membrane has become well-known for its various advantages, such as its low energy usage, cost-effective performance, high efficiency in desalination, and minimal fouling. Herein, the desalination performance of an FO system containing a boron-nitride slit membrane (BNSM) was investigated using molecular dynamics (MD) simulations. The effects of parameters, including slit width, temperature, draw solution (DS) concentration, and its types (MgCl<sub>2</sub>, CaCl<sub>2</sub>, and KCl), on salt ion rejections and water flow rate were explored. The rejection percentages of Na<sup>+</sup> and Mg<sup>2+</sup> ions decreased from 100 % to 94 % and 96 %, respectively, as the slit width increased from 6 Å to 9 Å. Additionally, the water flow rate increased significantly, from 17.305 to 80.92 molecules/ns, with the same increase in slit width. The temperature elevation led to a decrease in ion rejection percentage and increased the water flow rate, since, according to the Stokes-Einstein equation, the diffusion coefficient of spherical particles increases with increasing temperature. The changes in DS concentration did not affect the ion rejection performance due to the small size of the slit width as well as the dominant effect of size exclusion. The increase in the DS concentration caused concentration polarization and a decrease in osmotic pressure resulting in a drop in the water flow rate. Due to the highest hydration radius of K<sup>+</sup> ions, the rejection percentages of Mg<sup>2+</sup> and Ca<sup>2+</sup> ions were higher, while the Na <sup>+</sup> ion rejection percentages had the highest and lowest values in systems having DS of CaCl<sub>2</sub> and KCl, respectively, which was in accordance with the trend of water flow rate.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108905"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron nitride nanoslits for water desalination via forward osmosis: A molecular dynamics study\",\"authors\":\"Amin Hamed Mashhadzadeh , Maryam Zarghami Dehaghani , Narges Vafa , Bahar Firoozabadi , Boris Golman , Christos Spitas , Konstantinos V. Kostas\",\"doi\":\"10.1016/j.jmgm.2024.108905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global shortage of freshwater resources has spurred significant interest among scientists in the development of cost-effective and highly efficient water desalination methods. The forward osmosis (FO) membrane has become well-known for its various advantages, such as its low energy usage, cost-effective performance, high efficiency in desalination, and minimal fouling. Herein, the desalination performance of an FO system containing a boron-nitride slit membrane (BNSM) was investigated using molecular dynamics (MD) simulations. The effects of parameters, including slit width, temperature, draw solution (DS) concentration, and its types (MgCl<sub>2</sub>, CaCl<sub>2</sub>, and KCl), on salt ion rejections and water flow rate were explored. The rejection percentages of Na<sup>+</sup> and Mg<sup>2+</sup> ions decreased from 100 % to 94 % and 96 %, respectively, as the slit width increased from 6 Å to 9 Å. Additionally, the water flow rate increased significantly, from 17.305 to 80.92 molecules/ns, with the same increase in slit width. The temperature elevation led to a decrease in ion rejection percentage and increased the water flow rate, since, according to the Stokes-Einstein equation, the diffusion coefficient of spherical particles increases with increasing temperature. The changes in DS concentration did not affect the ion rejection performance due to the small size of the slit width as well as the dominant effect of size exclusion. The increase in the DS concentration caused concentration polarization and a decrease in osmotic pressure resulting in a drop in the water flow rate. Due to the highest hydration radius of K<sup>+</sup> ions, the rejection percentages of Mg<sup>2+</sup> and Ca<sup>2+</sup> ions were higher, while the Na <sup>+</sup> ion rejection percentages had the highest and lowest values in systems having DS of CaCl<sub>2</sub> and KCl, respectively, which was in accordance with the trend of water flow rate.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"134 \",\"pages\":\"Article 108905\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324002055\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324002055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Boron nitride nanoslits for water desalination via forward osmosis: A molecular dynamics study
The global shortage of freshwater resources has spurred significant interest among scientists in the development of cost-effective and highly efficient water desalination methods. The forward osmosis (FO) membrane has become well-known for its various advantages, such as its low energy usage, cost-effective performance, high efficiency in desalination, and minimal fouling. Herein, the desalination performance of an FO system containing a boron-nitride slit membrane (BNSM) was investigated using molecular dynamics (MD) simulations. The effects of parameters, including slit width, temperature, draw solution (DS) concentration, and its types (MgCl2, CaCl2, and KCl), on salt ion rejections and water flow rate were explored. The rejection percentages of Na+ and Mg2+ ions decreased from 100 % to 94 % and 96 %, respectively, as the slit width increased from 6 Å to 9 Å. Additionally, the water flow rate increased significantly, from 17.305 to 80.92 molecules/ns, with the same increase in slit width. The temperature elevation led to a decrease in ion rejection percentage and increased the water flow rate, since, according to the Stokes-Einstein equation, the diffusion coefficient of spherical particles increases with increasing temperature. The changes in DS concentration did not affect the ion rejection performance due to the small size of the slit width as well as the dominant effect of size exclusion. The increase in the DS concentration caused concentration polarization and a decrease in osmotic pressure resulting in a drop in the water flow rate. Due to the highest hydration radius of K+ ions, the rejection percentages of Mg2+ and Ca2+ ions were higher, while the Na + ion rejection percentages had the highest and lowest values in systems having DS of CaCl2 and KCl, respectively, which was in accordance with the trend of water flow rate.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.