{"title":"发酵柠檬乳杆菌 HcrF 的生化特征,这是一种依赖 NADH 的 2-烯还原酶,对羟基肉桂酸具有活性。","authors":"Gautam Gaur, Michael Gänzle","doi":"10.1093/lambio/ovae109","DOIUrl":null,"url":null,"abstract":"<p><p>In fermented plant foods, phenolic compounds are metabolized by 2-ene reductases, which reduce double bonds adjacent to an aromatic rings in phytochemicals including hydroxycinnamic acids, isoflavones, and flavones. Only few 2-ene reductases of lactic acid bacteria were characterized, including the hydrocinnamic reductases HcrB and Par1, and the daidzein reductase of Lactococcus lactis. This study aimed to characterize HcrF, a homologue of HcrB, in Limosilactobacillus fermentum. HcrF was purified after cloning in Escherichia coli and purification by affinity chromatography. HcrF was optimally active at 30 - 40°C and pH 7.0 and required both FMN and NADH as co-factors. Ferulic, caffeic, p-coumaric and sinapic acids but not trans-cinnamic acids were reduced to dihydro derivatives. The maximum reaction velocity Vmax of HcrF was highest for ferulic acid. On a phylogenetic tree of 2-ene reductases, HcrF clustered most closely with the hydroxycinnamic acid reductase HcrB of Lactiplantibacillus plantarum. The hydroxycinnamic acid reductase Par1 of Furfurilactobacillus milii and flavone or isoflavone reductases were only distantly related to HcrF. In summary, current knowledge does not allow to predict the substrate specificity of 2-ene reductases on the basis of the protein sequence; this study adds HcrF to the short list of enzymes with known substrate specificity.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical characterization of HcrF from Limosilactobacillus fermentum, a NADH-dependent 2-ene reductase with activity on hydroxycinnamic acids.\",\"authors\":\"Gautam Gaur, Michael Gänzle\",\"doi\":\"10.1093/lambio/ovae109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In fermented plant foods, phenolic compounds are metabolized by 2-ene reductases, which reduce double bonds adjacent to an aromatic rings in phytochemicals including hydroxycinnamic acids, isoflavones, and flavones. Only few 2-ene reductases of lactic acid bacteria were characterized, including the hydrocinnamic reductases HcrB and Par1, and the daidzein reductase of Lactococcus lactis. This study aimed to characterize HcrF, a homologue of HcrB, in Limosilactobacillus fermentum. HcrF was purified after cloning in Escherichia coli and purification by affinity chromatography. HcrF was optimally active at 30 - 40°C and pH 7.0 and required both FMN and NADH as co-factors. Ferulic, caffeic, p-coumaric and sinapic acids but not trans-cinnamic acids were reduced to dihydro derivatives. The maximum reaction velocity Vmax of HcrF was highest for ferulic acid. On a phylogenetic tree of 2-ene reductases, HcrF clustered most closely with the hydroxycinnamic acid reductase HcrB of Lactiplantibacillus plantarum. The hydroxycinnamic acid reductase Par1 of Furfurilactobacillus milii and flavone or isoflavone reductases were only distantly related to HcrF. In summary, current knowledge does not allow to predict the substrate specificity of 2-ene reductases on the basis of the protein sequence; this study adds HcrF to the short list of enzymes with known substrate specificity.</p>\",\"PeriodicalId\":17962,\"journal\":{\"name\":\"Letters in Applied Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovae109\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae109","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biochemical characterization of HcrF from Limosilactobacillus fermentum, a NADH-dependent 2-ene reductase with activity on hydroxycinnamic acids.
In fermented plant foods, phenolic compounds are metabolized by 2-ene reductases, which reduce double bonds adjacent to an aromatic rings in phytochemicals including hydroxycinnamic acids, isoflavones, and flavones. Only few 2-ene reductases of lactic acid bacteria were characterized, including the hydrocinnamic reductases HcrB and Par1, and the daidzein reductase of Lactococcus lactis. This study aimed to characterize HcrF, a homologue of HcrB, in Limosilactobacillus fermentum. HcrF was purified after cloning in Escherichia coli and purification by affinity chromatography. HcrF was optimally active at 30 - 40°C and pH 7.0 and required both FMN and NADH as co-factors. Ferulic, caffeic, p-coumaric and sinapic acids but not trans-cinnamic acids were reduced to dihydro derivatives. The maximum reaction velocity Vmax of HcrF was highest for ferulic acid. On a phylogenetic tree of 2-ene reductases, HcrF clustered most closely with the hydroxycinnamic acid reductase HcrB of Lactiplantibacillus plantarum. The hydroxycinnamic acid reductase Par1 of Furfurilactobacillus milii and flavone or isoflavone reductases were only distantly related to HcrF. In summary, current knowledge does not allow to predict the substrate specificity of 2-ene reductases on the basis of the protein sequence; this study adds HcrF to the short list of enzymes with known substrate specificity.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.