Yu-En Lin, Ebsy Jaimon, Francesca Tonelli, Suzanne R Pfeffer
{"title":"致病性 LRRK2 基因突变会导致纹状体视网膜旁中间神经元丧失初级纤毛和 Neurturin。","authors":"Yu-En Lin, Ebsy Jaimon, Francesca Tonelli, Suzanne R Pfeffer","doi":"10.26508/lsa.202402922","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease-associated, activating mutations in the LRRK2 kinase block primary cilium formation in cell culture and in specific cell types in the brain. In the striatum that is important for movement control, about half of astrocytes and cholinergic interneurons, but not the predominant medium spiny neurons, lose their primary cilia. Here, we show that mouse and human striatal parvalbumin interneurons that are inhibitory regulators of movement also lose primary cilia. Without cilia, these neurons are not able to respond to Sonic hedgehog signals that normally induce the expression of Patched RNA, and their numbers decrease. In addition, in mouse, glial cell line-derived neurotrophic factor-related Neurturin RNA is significantly decreased. These experiments highlight the importance of parvalbumin neurons in cilium-dependent, neuroprotective signaling pathways and show that LRRK2 activation correlates with decreased Neurturin production, resulting in less neuroprotection for dopamine neurons.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561259/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pathogenic <i>LRRK2</i> mutations cause loss of primary cilia and Neurturin in striatal parvalbumin interneurons.\",\"authors\":\"Yu-En Lin, Ebsy Jaimon, Francesca Tonelli, Suzanne R Pfeffer\",\"doi\":\"10.26508/lsa.202402922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease-associated, activating mutations in the LRRK2 kinase block primary cilium formation in cell culture and in specific cell types in the brain. In the striatum that is important for movement control, about half of astrocytes and cholinergic interneurons, but not the predominant medium spiny neurons, lose their primary cilia. Here, we show that mouse and human striatal parvalbumin interneurons that are inhibitory regulators of movement also lose primary cilia. Without cilia, these neurons are not able to respond to Sonic hedgehog signals that normally induce the expression of Patched RNA, and their numbers decrease. In addition, in mouse, glial cell line-derived neurotrophic factor-related Neurturin RNA is significantly decreased. These experiments highlight the importance of parvalbumin neurons in cilium-dependent, neuroprotective signaling pathways and show that LRRK2 activation correlates with decreased Neurturin production, resulting in less neuroprotection for dopamine neurons.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561259/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202402922\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402922","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Pathogenic LRRK2 mutations cause loss of primary cilia and Neurturin in striatal parvalbumin interneurons.
Parkinson's disease-associated, activating mutations in the LRRK2 kinase block primary cilium formation in cell culture and in specific cell types in the brain. In the striatum that is important for movement control, about half of astrocytes and cholinergic interneurons, but not the predominant medium spiny neurons, lose their primary cilia. Here, we show that mouse and human striatal parvalbumin interneurons that are inhibitory regulators of movement also lose primary cilia. Without cilia, these neurons are not able to respond to Sonic hedgehog signals that normally induce the expression of Patched RNA, and their numbers decrease. In addition, in mouse, glial cell line-derived neurotrophic factor-related Neurturin RNA is significantly decreased. These experiments highlight the importance of parvalbumin neurons in cilium-dependent, neuroprotective signaling pathways and show that LRRK2 activation correlates with decreased Neurturin production, resulting in less neuroprotection for dopamine neurons.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.