利用分类模型分析斜轧参数对 C60 钢零件表面质量的影响

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2024-11-01 DOI:10.3390/ma17215362
Konrad Lis
{"title":"利用分类模型分析斜轧参数对 C60 钢零件表面质量的影响","authors":"Konrad Lis","doi":"10.3390/ma17215362","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the experimental and numerical results of a study on producing axisymmetric parts made of the C60-grade steel by skew rolling. The experimental part of this study involved conducting the skew rolling process with varying parameters, including the forming angle <i>α</i>, tool angle <i>θ</i>, chuck velocity <i>V<sub>u</sub></i>, and reduction ratio <i>δ</i>. Their effect on the quality of produced parts was examined and described by the roughness parameter Ra. Numerical calculations involved the use of machine learning models to predict the quality class of produced parts. The highest prediction accuracy of the results was obtained with the random forest and logistic regression models. Metrics such as precision, recall and accuracy were used to evaluate the performance of individual models. Confusion matrices and ROC curves were also employed to illustrate the performance of the classification models. The results of this study will make it possible to prevent the formation of spiral grooves on the circumference of steel parts during the rolling process.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547313/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Analysis of the Effect of Skew Rolling Parameters on the Surface Quality of C60 Steel Parts Using Classification Models.\",\"authors\":\"Konrad Lis\",\"doi\":\"10.3390/ma17215362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the experimental and numerical results of a study on producing axisymmetric parts made of the C60-grade steel by skew rolling. The experimental part of this study involved conducting the skew rolling process with varying parameters, including the forming angle <i>α</i>, tool angle <i>θ</i>, chuck velocity <i>V<sub>u</sub></i>, and reduction ratio <i>δ</i>. Their effect on the quality of produced parts was examined and described by the roughness parameter Ra. Numerical calculations involved the use of machine learning models to predict the quality class of produced parts. The highest prediction accuracy of the results was obtained with the random forest and logistic regression models. Metrics such as precision, recall and accuracy were used to evaluate the performance of individual models. Confusion matrices and ROC curves were also employed to illustrate the performance of the classification models. The results of this study will make it possible to prevent the formation of spiral grooves on the circumference of steel parts during the rolling process.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547313/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215362\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215362","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了通过斜轧生产 C60 级钢轴对称零件的实验和数值研究结果。该研究的实验部分涉及在不同参数(包括成型角 α、刀具角 θ、卡盘速度 Vu 和缩减比 δ)下进行斜轧工艺,并用粗糙度参数 Ra 来描述它们对所生产零件质量的影响。数值计算涉及使用机器学习模型来预测生产零件的质量等级。随机森林模型和逻辑回归模型的预测精度最高。精确度、召回率和准确度等指标用于评估各个模型的性能。此外,还采用了混淆矩阵和 ROC 曲线来说明分类模型的性能。这项研究的结果将有助于防止钢铁部件在轧制过程中在圆周上形成螺旋沟槽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Analysis of the Effect of Skew Rolling Parameters on the Surface Quality of C60 Steel Parts Using Classification Models.

This paper presents the experimental and numerical results of a study on producing axisymmetric parts made of the C60-grade steel by skew rolling. The experimental part of this study involved conducting the skew rolling process with varying parameters, including the forming angle α, tool angle θ, chuck velocity Vu, and reduction ratio δ. Their effect on the quality of produced parts was examined and described by the roughness parameter Ra. Numerical calculations involved the use of machine learning models to predict the quality class of produced parts. The highest prediction accuracy of the results was obtained with the random forest and logistic regression models. Metrics such as precision, recall and accuracy were used to evaluate the performance of individual models. Confusion matrices and ROC curves were also employed to illustrate the performance of the classification models. The results of this study will make it possible to prevent the formation of spiral grooves on the circumference of steel parts during the rolling process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
Accelerating Discontinuous Precipitation to Increase Strength by Pre-Deformation in Cu-Ni-Si Alloys. Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings. Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF). Effect of Flax By-Products on the Mechanical and Cracking Behaviors of Expansive Soil. Multiscale Modeling of Nanoparticle Precipitation in Oxide Dispersion-Strengthened Steels Produced by Laser Powder Bed Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1