SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C 纳米复合材料的制备、微结构演变和力学性能

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2024-10-31 DOI:10.3390/ma17215294
Zhenyue Wang, Tianci Zhou, Xiantao Yang, Yuenong Liu, Qingbo Wen, Zhaoju Yu
{"title":"SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C 纳米复合材料的制备、微结构演变和力学性能","authors":"Zhenyue Wang, Tianci Zhou, Xiantao Yang, Yuenong Liu, Qingbo Wen, Zhaoju Yu","doi":"10.3390/ma17215294","DOIUrl":null,"url":null,"abstract":"<p><p>A dense monolithic SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C high-entropy ceramic nanocomposite was prepared using a polymer-derived ceramic (PDC) method combined with spark plasma sintering (SPS). The microstructural evolution and mechanical properties of the obtained nanocomposites were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning-electron microscope (SEM), and nanoindentation. The results indicate that the phase composition of SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C can be adjusted by modifying the metal content of the single-source precursor (SSP) through molecular design. The resulting precursor exhibits an exceptionally high ceramic yield, with mass retention of over 90% at 1100 °C, which guarantees the densification of the final SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C composites. The PDC route facilitates the in situ formation of a high-entropy phase within the ceramic matrix under low temperature pyrolysis conditions. Combined with SPS, a dense monolithic SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C nanocomposite was obtained, exhibiting an open porosity of 0.41 vol%, nano-hardness of 27.47 ± 0.46 GPa, elastic modulus of 324.00 ± 13.60 GPa, and fracture toughness of 3.59 ± 0.24 MPa·m<sup>0.5</sup>, demonstrating excellent mechanical properties.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547591/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication, Microstructural Evolution, and Mechanical Properties of SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C Nanocomposites.\",\"authors\":\"Zhenyue Wang, Tianci Zhou, Xiantao Yang, Yuenong Liu, Qingbo Wen, Zhaoju Yu\",\"doi\":\"10.3390/ma17215294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A dense monolithic SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C high-entropy ceramic nanocomposite was prepared using a polymer-derived ceramic (PDC) method combined with spark plasma sintering (SPS). The microstructural evolution and mechanical properties of the obtained nanocomposites were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning-electron microscope (SEM), and nanoindentation. The results indicate that the phase composition of SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C can be adjusted by modifying the metal content of the single-source precursor (SSP) through molecular design. The resulting precursor exhibits an exceptionally high ceramic yield, with mass retention of over 90% at 1100 °C, which guarantees the densification of the final SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C composites. The PDC route facilitates the in situ formation of a high-entropy phase within the ceramic matrix under low temperature pyrolysis conditions. Combined with SPS, a dense monolithic SiC/(Hf<sub>0.25</sub>Ta<sub>0.25</sub>Zr<sub>0.25</sub>Nb<sub>0.25</sub>)C/C nanocomposite was obtained, exhibiting an open porosity of 0.41 vol%, nano-hardness of 27.47 ± 0.46 GPa, elastic modulus of 324.00 ± 13.60 GPa, and fracture toughness of 3.59 ± 0.24 MPa·m<sup>0.5</sup>, demonstrating excellent mechanical properties.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547591/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215294\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215294","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用聚合物衍生陶瓷(PDC)法结合火花等离子烧结(SPS)法制备了致密的整体式 SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C 高熵陶瓷纳米复合材料。通过 X 射线衍射仪 (XRD)、透射电子显微镜 (TEM)、扫描电子显微镜 (SEM) 和纳米压痕法对所制备纳米复合材料的微观结构演变和力学性能进行了表征。结果表明,SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C 的相组成可以通过分子设计改变单源前驱体(SSP)中的金属含量来调整。由此得到的前驱体具有极高的陶瓷产率,在 1100 °C 时的质量保持率超过 90%,这保证了最终 SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C 复合材料的致密化。在低温热解条件下,PDC 路线有利于在陶瓷基体中就地形成高熵相。结合 SPS,获得了致密的整体式 SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C 纳米复合材料,其开放孔隙率为 0.41 Vol%,纳米硬度为 27.47 ± 0.46 GPa,弹性模量为 324.00 ± 13.60 GPa,断裂韧性为 3.59 ± 0.24 MPa-m0.5,表现出优异的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication, Microstructural Evolution, and Mechanical Properties of SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C Nanocomposites.

A dense monolithic SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C high-entropy ceramic nanocomposite was prepared using a polymer-derived ceramic (PDC) method combined with spark plasma sintering (SPS). The microstructural evolution and mechanical properties of the obtained nanocomposites were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning-electron microscope (SEM), and nanoindentation. The results indicate that the phase composition of SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C can be adjusted by modifying the metal content of the single-source precursor (SSP) through molecular design. The resulting precursor exhibits an exceptionally high ceramic yield, with mass retention of over 90% at 1100 °C, which guarantees the densification of the final SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C composites. The PDC route facilitates the in situ formation of a high-entropy phase within the ceramic matrix under low temperature pyrolysis conditions. Combined with SPS, a dense monolithic SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C nanocomposite was obtained, exhibiting an open porosity of 0.41 vol%, nano-hardness of 27.47 ± 0.46 GPa, elastic modulus of 324.00 ± 13.60 GPa, and fracture toughness of 3.59 ± 0.24 MPa·m0.5, demonstrating excellent mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
Accelerating Discontinuous Precipitation to Increase Strength by Pre-Deformation in Cu-Ni-Si Alloys. Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings. Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF). Effect of Flax By-Products on the Mechanical and Cracking Behaviors of Expansive Soil. Multiscale Modeling of Nanoparticle Precipitation in Oxide Dispersion-Strengthened Steels Produced by Laser Powder Bed Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1