{"title":"高通量提取人体生物流体中的糖胺聚糖并进行超高效液相色谱-质谱/质谱定量。","authors":"Nicola Volpi, Fabio Galeotti, Francesco Gatto","doi":"10.1038/s41596-024-01078-9","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput glycosaminoglycan extraction and UHPLC-MS/MS quantification in human biofluids.\",\"authors\":\"Nicola Volpi, Fabio Galeotti, Francesco Gatto\",\"doi\":\"10.1038/s41596-024-01078-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-024-01078-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01078-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-throughput glycosaminoglycan extraction and UHPLC-MS/MS quantification in human biofluids.
Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.