{"title":"在亚胺和乙烯基乙酸的辅助下,钯催化芳基胺的正交-C(sp2)-H 活化/环化。","authors":"Xiangwen Tan, Yaru Jing, Jiahao Wu, Jiatian Li, Zhenjie Yang, Wanqing Wu, Zhuofeng Ke, Huanfeng Jiang","doi":"10.1038/s41467-024-54018-2","DOIUrl":null,"url":null,"abstract":"<p><p>Palladium-catalyzed directed C - H functionalization/cyclization is an effective approach for synthesizing nitrogen heterocycles. Imine, known for its ease of installation/removal, has been extensively used in the C-H activation of aldehydes, ketones, and alkylamines. Nevertheless, it has been rarely explored in the C(sp<sup>2</sup>)-H activation of aryl amines because of the generation of a strained four-membered palladacycle. Herein, an imine directed palladium catalyzed C(sp<sup>2</sup>)-H functionalization of aryl amines assisted by vinylacetic acid is established, providing access to a variety of γ-lactone fused tetrahydroquinolines under mild reaction conditions. The methodology demonstrates broad substrate scope and good functional group tolerance, representing notable advancement in organic synthesis. Mechanistic experiments are performed to clarify how the C(sp<sup>2</sup>)-H activation occurs, indicating the crucial role of vinylacetic acid. DFT calculations supports the observations, elucidating the strained four-membered ring C-H activation barrier is overcome via coordination and hydrogen bond interaction of vinylacetic acid.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"9877"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Palladium catalyzed ortho-C(sp<sup>2</sup>)-H activation/cyclization of aryl amines assisted by imine and vinylacetic acid.\",\"authors\":\"Xiangwen Tan, Yaru Jing, Jiahao Wu, Jiatian Li, Zhenjie Yang, Wanqing Wu, Zhuofeng Ke, Huanfeng Jiang\",\"doi\":\"10.1038/s41467-024-54018-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Palladium-catalyzed directed C - H functionalization/cyclization is an effective approach for synthesizing nitrogen heterocycles. Imine, known for its ease of installation/removal, has been extensively used in the C-H activation of aldehydes, ketones, and alkylamines. Nevertheless, it has been rarely explored in the C(sp<sup>2</sup>)-H activation of aryl amines because of the generation of a strained four-membered palladacycle. Herein, an imine directed palladium catalyzed C(sp<sup>2</sup>)-H functionalization of aryl amines assisted by vinylacetic acid is established, providing access to a variety of γ-lactone fused tetrahydroquinolines under mild reaction conditions. The methodology demonstrates broad substrate scope and good functional group tolerance, representing notable advancement in organic synthesis. Mechanistic experiments are performed to clarify how the C(sp<sup>2</sup>)-H activation occurs, indicating the crucial role of vinylacetic acid. DFT calculations supports the observations, elucidating the strained four-membered ring C-H activation barrier is overcome via coordination and hydrogen bond interaction of vinylacetic acid.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"9877\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54018-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54018-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Palladium catalyzed ortho-C(sp2)-H activation/cyclization of aryl amines assisted by imine and vinylacetic acid.
Palladium-catalyzed directed C - H functionalization/cyclization is an effective approach for synthesizing nitrogen heterocycles. Imine, known for its ease of installation/removal, has been extensively used in the C-H activation of aldehydes, ketones, and alkylamines. Nevertheless, it has been rarely explored in the C(sp2)-H activation of aryl amines because of the generation of a strained four-membered palladacycle. Herein, an imine directed palladium catalyzed C(sp2)-H functionalization of aryl amines assisted by vinylacetic acid is established, providing access to a variety of γ-lactone fused tetrahydroquinolines under mild reaction conditions. The methodology demonstrates broad substrate scope and good functional group tolerance, representing notable advancement in organic synthesis. Mechanistic experiments are performed to clarify how the C(sp2)-H activation occurs, indicating the crucial role of vinylacetic acid. DFT calculations supports the observations, elucidating the strained four-membered ring C-H activation barrier is overcome via coordination and hydrogen bond interaction of vinylacetic acid.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.