Cong Xue , Bing Liu , Yun Zhao , Xue Wang , Zhao-Wei Sun , Fang Xie , Ling-Jia Qian
{"title":"慢性应激干扰了小鼠海马和前额叶皮层中同型半胱氨酸的代谢。","authors":"Cong Xue , Bing Liu , Yun Zhao , Xue Wang , Zhao-Wei Sun , Fang Xie , Ling-Jia Qian","doi":"10.1016/j.neuroscience.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Stress is an independent risk factor for cognitive impairment, with elevated plasma homocysteine (HCY) levels playing a crucial role in stress-induced cognitive decline. While the rise in plasma HCY levels is linked to abnormal peripheral catabolism, the impact of stress on HCY catabolism in the brain remains unclear. This study investigated the effect of stress on HCY metabolism in the brain by analyzing HCY and its metabolic enzymes in the hippocampus and prefrontal cortex. The results showed a significant decrease in enzymes MS (methionine-synthase), CBS (cystathionineβ-synthase), and CSE (cystathionine γ-lyase) in these brain regions of mice subjected to 3 weeks of restraint stress, leading to HCY accumulation. Additionally, the enzyme MTHFR (methylenetetrahydrofolate reductase) remained unchanged. Immunofluorescence double-labeling revealed the downregulation of HCY metabolic enzymes in neurons of stressed mice. The transcription factor KLF4 (Kruppel-like<!--> <!-->factor<!--> <!-->4), known for its inhibitory role, increased after stress or glucocorticoid treatment and suppressed the expression of MS, CBS, and CSE, contributing to elevated HCY levels in the brain. These findings offer new insights into the impairment of HCY catabolism in the stressed brain, suggesting that the downregulation of HCY metabolic enzymes may underlie HCY accumulation and exacerbate stress-induced cognitive dysfunction.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"563 ","pages":"Pages 63-73"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic stress disturbed the metabolism of homocysteine in mouse hippocampus and prefrontal cortex\",\"authors\":\"Cong Xue , Bing Liu , Yun Zhao , Xue Wang , Zhao-Wei Sun , Fang Xie , Ling-Jia Qian\",\"doi\":\"10.1016/j.neuroscience.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stress is an independent risk factor for cognitive impairment, with elevated plasma homocysteine (HCY) levels playing a crucial role in stress-induced cognitive decline. While the rise in plasma HCY levels is linked to abnormal peripheral catabolism, the impact of stress on HCY catabolism in the brain remains unclear. This study investigated the effect of stress on HCY metabolism in the brain by analyzing HCY and its metabolic enzymes in the hippocampus and prefrontal cortex. The results showed a significant decrease in enzymes MS (methionine-synthase), CBS (cystathionineβ-synthase), and CSE (cystathionine γ-lyase) in these brain regions of mice subjected to 3 weeks of restraint stress, leading to HCY accumulation. Additionally, the enzyme MTHFR (methylenetetrahydrofolate reductase) remained unchanged. Immunofluorescence double-labeling revealed the downregulation of HCY metabolic enzymes in neurons of stressed mice. The transcription factor KLF4 (Kruppel-like<!--> <!-->factor<!--> <!-->4), known for its inhibitory role, increased after stress or glucocorticoid treatment and suppressed the expression of MS, CBS, and CSE, contributing to elevated HCY levels in the brain. These findings offer new insights into the impairment of HCY catabolism in the stressed brain, suggesting that the downregulation of HCY metabolic enzymes may underlie HCY accumulation and exacerbate stress-induced cognitive dysfunction.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"563 \",\"pages\":\"Pages 63-73\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645222400589X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645222400589X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Chronic stress disturbed the metabolism of homocysteine in mouse hippocampus and prefrontal cortex
Stress is an independent risk factor for cognitive impairment, with elevated plasma homocysteine (HCY) levels playing a crucial role in stress-induced cognitive decline. While the rise in plasma HCY levels is linked to abnormal peripheral catabolism, the impact of stress on HCY catabolism in the brain remains unclear. This study investigated the effect of stress on HCY metabolism in the brain by analyzing HCY and its metabolic enzymes in the hippocampus and prefrontal cortex. The results showed a significant decrease in enzymes MS (methionine-synthase), CBS (cystathionineβ-synthase), and CSE (cystathionine γ-lyase) in these brain regions of mice subjected to 3 weeks of restraint stress, leading to HCY accumulation. Additionally, the enzyme MTHFR (methylenetetrahydrofolate reductase) remained unchanged. Immunofluorescence double-labeling revealed the downregulation of HCY metabolic enzymes in neurons of stressed mice. The transcription factor KLF4 (Kruppel-like factor 4), known for its inhibitory role, increased after stress or glucocorticoid treatment and suppressed the expression of MS, CBS, and CSE, contributing to elevated HCY levels in the brain. These findings offer new insights into the impairment of HCY catabolism in the stressed brain, suggesting that the downregulation of HCY metabolic enzymes may underlie HCY accumulation and exacerbate stress-induced cognitive dysfunction.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.