Yuqin Wu, Andrea Y Chan, Jana Hauke, Okka Htin Aung, Ashish Foollee, Maria Almira S Cleofe, Helen Stölting, Mei-Ling Han, Katherine J Jeppe, Christopher K Barlow, Jürgen G Okun, Patricia M Rusu, Adam J Rose
{"title":"胰高血糖素在不同肥胖症和 2 型糖尿病小鼠模型中的代谢作用各不相同。","authors":"Yuqin Wu, Andrea Y Chan, Jana Hauke, Okka Htin Aung, Ashish Foollee, Maria Almira S Cleofe, Helen Stölting, Mei-Ling Han, Katherine J Jeppe, Christopher K Barlow, Jürgen G Okun, Patricia M Rusu, Adam J Rose","doi":"10.1016/j.molmet.2024.102064","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aimed to investigate the effects of glucagon on metabolic pathways in mouse models of obesity, fatty liver disease, and type 2 diabetes (T2D) to determine the extent and variability of hepatic glucagon resistance in these conditions.</p><p><strong>Methods: </strong>We investigated glucagon's effects in mouse models of fatty liver disease, obesity, and type 2 diabetes (T2D), including male BKS-db/db, high-fat diet-fed, and western diet-fed C57Bl/6 mice. Glucagon tolerance tests were performed using the selective glucagon receptor agonist acyl-glucagon (IUB288). Blood glucose, serum and liver metabolites include lipids and amino acids were measured. Additionally, liver protein expression related to glucagon signalling and a comprehensive liver metabolomics were performed.</p><p><strong>Results: </strong>Western diet-fed mice displayed impaired glucagon response, with reduced blood glucose and PKA activation. In contrast, high-fat diet-fed and db/db mice maintained normal glucagon sensitivity, showing significant elevations in blood glucose and phospho-PKA motif protein expression. Acyl-glucagon treatment also lowered liver alanine and histidine levels in high-fat diet-fed mice, but not in western diet-fed mice. Additionally, some amino acids, such as methionine, were increased by acyl-glucagon only in chow diet control mice. Despite normal glucagon sensitivity in PKA signalling, db/db mice had a distinct metabolomic response, with acyl-glucagon significantly altering 90 metabolites in db/+ mice but only 42 in db/db mice, and classic glucagon-regulated metabolites, such as cyclic adenosine monophosphate (cAMP), being less responsive in db/db mice.</p><p><strong>Conclusions: </strong>The study reveals that hepatic glucagon resistance in obesity and T2D is complex and not uniform across metabolic pathways, underscoring the complexity of glucagon action in these conditions.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102064"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable glucagon metabolic actions in diverse mouse models of obesity and type 2 diabetes.\",\"authors\":\"Yuqin Wu, Andrea Y Chan, Jana Hauke, Okka Htin Aung, Ashish Foollee, Maria Almira S Cleofe, Helen Stölting, Mei-Ling Han, Katherine J Jeppe, Christopher K Barlow, Jürgen G Okun, Patricia M Rusu, Adam J Rose\",\"doi\":\"10.1016/j.molmet.2024.102064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The study aimed to investigate the effects of glucagon on metabolic pathways in mouse models of obesity, fatty liver disease, and type 2 diabetes (T2D) to determine the extent and variability of hepatic glucagon resistance in these conditions.</p><p><strong>Methods: </strong>We investigated glucagon's effects in mouse models of fatty liver disease, obesity, and type 2 diabetes (T2D), including male BKS-db/db, high-fat diet-fed, and western diet-fed C57Bl/6 mice. Glucagon tolerance tests were performed using the selective glucagon receptor agonist acyl-glucagon (IUB288). Blood glucose, serum and liver metabolites include lipids and amino acids were measured. Additionally, liver protein expression related to glucagon signalling and a comprehensive liver metabolomics were performed.</p><p><strong>Results: </strong>Western diet-fed mice displayed impaired glucagon response, with reduced blood glucose and PKA activation. In contrast, high-fat diet-fed and db/db mice maintained normal glucagon sensitivity, showing significant elevations in blood glucose and phospho-PKA motif protein expression. Acyl-glucagon treatment also lowered liver alanine and histidine levels in high-fat diet-fed mice, but not in western diet-fed mice. Additionally, some amino acids, such as methionine, were increased by acyl-glucagon only in chow diet control mice. Despite normal glucagon sensitivity in PKA signalling, db/db mice had a distinct metabolomic response, with acyl-glucagon significantly altering 90 metabolites in db/+ mice but only 42 in db/db mice, and classic glucagon-regulated metabolites, such as cyclic adenosine monophosphate (cAMP), being less responsive in db/db mice.</p><p><strong>Conclusions: </strong>The study reveals that hepatic glucagon resistance in obesity and T2D is complex and not uniform across metabolic pathways, underscoring the complexity of glucagon action in these conditions.</p>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\" \",\"pages\":\"102064\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molmet.2024.102064\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2024.102064","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Variable glucagon metabolic actions in diverse mouse models of obesity and type 2 diabetes.
Objective: The study aimed to investigate the effects of glucagon on metabolic pathways in mouse models of obesity, fatty liver disease, and type 2 diabetes (T2D) to determine the extent and variability of hepatic glucagon resistance in these conditions.
Methods: We investigated glucagon's effects in mouse models of fatty liver disease, obesity, and type 2 diabetes (T2D), including male BKS-db/db, high-fat diet-fed, and western diet-fed C57Bl/6 mice. Glucagon tolerance tests were performed using the selective glucagon receptor agonist acyl-glucagon (IUB288). Blood glucose, serum and liver metabolites include lipids and amino acids were measured. Additionally, liver protein expression related to glucagon signalling and a comprehensive liver metabolomics were performed.
Results: Western diet-fed mice displayed impaired glucagon response, with reduced blood glucose and PKA activation. In contrast, high-fat diet-fed and db/db mice maintained normal glucagon sensitivity, showing significant elevations in blood glucose and phospho-PKA motif protein expression. Acyl-glucagon treatment also lowered liver alanine and histidine levels in high-fat diet-fed mice, but not in western diet-fed mice. Additionally, some amino acids, such as methionine, were increased by acyl-glucagon only in chow diet control mice. Despite normal glucagon sensitivity in PKA signalling, db/db mice had a distinct metabolomic response, with acyl-glucagon significantly altering 90 metabolites in db/+ mice but only 42 in db/db mice, and classic glucagon-regulated metabolites, such as cyclic adenosine monophosphate (cAMP), being less responsive in db/db mice.
Conclusions: The study reveals that hepatic glucagon resistance in obesity and T2D is complex and not uniform across metabolic pathways, underscoring the complexity of glucagon action in these conditions.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.